論文の概要: CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs
- arxiv url: http://arxiv.org/abs/2504.14905v1
- Date: Mon, 21 Apr 2025 07:20:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 19:10:08.106151
- Title: CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs
- Title(参考訳): CRAVE: LLMを用いた説明可能なクレーム検証のための競合推論アプローチ
- Authors: Yingming Zheng, Xiaoliang Liu, Peng Wu, Li Pan,
- Abstract要約: CRAVE は、説明可能なクレーム VErification に対する Conflicting Reasoning Approach である。
大規模な言語モデルによって推論される矛盾する理性に基づいて、複雑なクレームを検証することができる。
CRAVEは最先端の手法よりもはるかに優れた性能を実現している。
- 参考スコア(独自算出の注目度): 15.170312674645535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid spread of misinformation, driven by digital media and AI-generated content, has made automatic claim verification essential. Traditional methods, which depend on expert-annotated evidence, are labor-intensive and not scalable. Although recent automated systems have improved, they still struggle with complex claims that require nuanced reasoning. To address this, we propose CRAVE, a Conflicting Reasoning Approach for explainable claim VErification, that verify the complex claims based on the conflicting rationales reasoned by large language models (LLMs). Specifically, CRAVE introduces a three-module framework. Ambiguity Elimination enchanced Evidence Retrieval module performs ambiguity elimination and entity-based search to gather relevant evidence related to claim verification from external sources like Wikipedia. Conflicting Perspective Reasoning and Preliminary Judgment module with LLMs adopts LLMs to reason rationales with conflicting stances about claim verification from retrieved evidence across four dimensions, i.e., direct evidence, semantic relationships, linguistic patterns, and logical reasoning and make a preliminary judgment. Finally, Small Language Model (SLM) based Judge module is fine-tuned to make use of preliminary judgment from LLMs to assess the confidence of the conflicting rationales and make a final authenticity judgment. This methodology allows CRAVE to capture subtle inconsistencies in complex claims, improving both the accuracy and transparency of claim verification. Extensive experiments on two public claim verification datasets demonstrate that our CRAVE model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for finding relevant evidence and explaining the model predictions. The code is provided at https://github.com/8zym/CRAVE.
- Abstract(参考訳): デジタルメディアとAI生成コンテンツによって駆動される誤報の急速な拡散は、自動クレーム検証を必須にしている。
専門家が記した証拠に依存する従来の手法は、労働集約的であり、スケーラブルではない。
最近の自動化システムは改善されているが、しかしながら、曖昧な推論を必要とする複雑なクレームに苦戦している。
そこで本稿では,大規模言語モデル (LLM) による論理的矛盾に基づく複雑なクレームの検証を行う,説明可能なクレームのverificationのための競合推論手法であるCRAVEを提案する。
具体的には、CRAVEは3つのモジュールフレームワークを導入している。
Ambiguity Elimination enchanced Evidence Retrieval Module(英語版)は、ウィキペディアのような外部ソースからのクレーム検証に関連する証拠を集めるために、曖昧性除去とエンティティベースの検索を行う。
LLMと矛盾するパースペクティブ推論および予備的判断モジュールは、LLMを採用して、4つの次元、すなわち直接的証拠、意味的関係、言語パターン、論理的推論から取得された証拠からのクレーム検証に関する矛盾するスタンスを理性的に推論し、予備的判断を行う。
最後に,Small Language Model (SLM) に基づく判断モジュールを微調整し,LLMの予備的判断を用いて矛盾する論理の信頼性を評価し,最終的な正当性判定を行う。
この手法により、CRAVEは複雑なクレームの微妙な不整合を捉え、クレーム検証の正確性と透明性の両方を改善することができる。
2つの公開クレーム検証データセットに対する大規模な実験により、我々のCRAVEモデルは最先端の手法よりもはるかに優れた性能を示し、関連するエビデンスを見つけ、モデル予測を説明するのに優れた能力を示している。
コードはhttps://github.com/8zym/CRAVEで提供されている。
関連論文リスト
- FactLens: Benchmarking Fine-Grained Fact Verification [6.814173254027381]
我々は、複雑なクレームを個別の検証のためにより小さなサブステートに分割する、きめ細かい検証へのシフトを提唱する。
我々は,ファクトレンス(FactLens)という,ファクトレンス(FactLens)という,詳細な事実検証のベンチマークを紹介した。
この結果から,FactLens自動評価器と人的判断との整合性を示し,評価性能に対する準定値特性の影響について考察した。
論文 参考訳(メタデータ) (2024-11-08T21:26:57Z) - Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
ファクト・チェッキング・リランカ(Contrastive Fact-Checking Reranker, CFR)を提案する。
我々はAVeriTeCデータセットを活用し、証拠文書からの人間による回答とクレームのサブクエストを注釈付けする。
データセットの精度は6%向上した。
論文 参考訳(メタデータ) (2024-10-07T00:09:50Z) - Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments [23.639378586798884]
コントラスト引数の合成による検索拡張現実事実検証を提案する。
提案手法は,関連文書を証拠として効果的に検索し,様々な視点から議論を評価する。
RAFTS は GPT 法よりはるかに小さい 7B LLM で優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-06-14T08:13:34Z) - Missci: Reconstructing Fallacies in Misrepresented Science [84.32990746227385]
ソーシャルネットワーク上の健康関連の誤報は、意思決定の貧弱さと現実世界の危険につながる可能性がある。
ミスシは、誤った推論のための新しい議論理論モデルである。
大規模言語モデルの批判的推論能力をテストするためのデータセットとしてMissciを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:11:10Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization(別名 ClaimNorm)は、複雑でノイズの多いソーシャルメディア投稿を、より単純で分かりやすい形式に分解することを目的としている。
本稿では,チェーン・オブ・ソートとクレーム・チェック・バシネス推定を利用した先駆的アプローチであるCACNを提案する。
実験により, CACNは様々な評価尺度において, いくつかの基準値を上回る性能を示した。
論文 参考訳(メタデータ) (2023-10-22T16:07:06Z) - Explainable Claim Verification via Knowledge-Grounded Reasoning with
Large Language Models [36.91218391728405]
本稿では,FOLK(First-Order-Logic-Guided Knowledge-Grounded Reasoning)を提案する。
複雑なクレームを検証し、注釈付きエビデンスを必要とせずに説明を生成することができる。
実験の結果,FOLKは3つのデータセットに対して高いベースラインを達成できた。
論文 参考訳(メタデータ) (2023-10-08T18:04:05Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
本稿では,証拠の検索とクレームの検証を行うためにReReadという名前の事実検証モデルを提案する。
提案システムは,異なる設定下での最良のレポートモデルに対して,大幅な改善を実現することができる。
論文 参考訳(メタデータ) (2023-05-02T03:23:14Z) - ExClaim: Explainable Neural Claim Verification Using Rationalization [8.369720566612111]
ExClaimは、基礎的な証拠を含む説明可能なクレーム検証システムを提供しようとしている。
法体系にインスパイアされたExClaimは、合理化を活用して、請求に対する評決を提供する。
統計的および説明可能なAI(XAI)の評価は、有効で信頼性の高い結果を保証するために行われる。
論文 参考訳(メタデータ) (2023-01-21T08:26:27Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
本稿では,事実検証のための新たな話題認識型証拠推論とスタンス認識型アグリゲーションモデルを提案する。
2つのベンチマークデータセットで実施されたテストは、事実検証のためのいくつかの最先端アプローチよりも提案モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-02T14:33:12Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
実世界の情報ニーズから10kクレームを抽出したファクトチェックデータセットであるAmbiFCを提示する。
アンビFCの証拠に対する主張を比較する際に,曖昧さから生じる不一致を分析した。
我々は,このあいまいさをソフトラベルで予測するモデルを開発した。
論文 参考訳(メタデータ) (2021-04-01T17:40:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。