Erratic non-Hermitian skin localization
- URL: http://arxiv.org/abs/2504.14910v2
- Date: Wed, 23 Apr 2025 16:28:54 GMT
- Title: Erratic non-Hermitian skin localization
- Authors: Stefano Longhi,
- Abstract summary: A novel localization phenomenon, termed erratic non-Hermitian skin localization, has been identified in disordered globally-reciprocal non-Hermitian lattices.<n>Unlike conventional non-Hermitian skin effect and Anderson localization, it features macroscopic eigenstate localization at irregular, disorder-dependent positions with sub-exponential decay.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel localization phenomenon, termed erratic non-Hermitian skin localization, has been identified in disordered globally-reciprocal non-Hermitian lattices. Unlike conventional non-Hermitian skin effect and Anderson localization, it features macroscopic eigenstate localization at irregular, disorder-dependent positions with sub-exponential decay. Using the Hatano-Nelson model with disordered imaginary gauge fields as a case study, this effect is linked to stochastic interfaces governed by the universal order statistics of random walks. Finite-size scaling analysis confirms the localized nature of the eigenstates. This discovery challenges conventional wave localization paradigms, offering new avenues for understanding and controlling localization phenomena in non-Hermitian physics.
Related papers
- On Diffusion Models for Multi-Agent Partial Observability: Shared Attractors, Error Bounds, and Composite Flow [37.433470342139685]
We investigate reconstructing global states from local action-observation histories in Dec-POMDPs using diffusion models.<n>We find that, with deep learning approximation errors, fixed points can deviate from true states and the deviation is negatively correlated to the Jacobian rank.
arXiv Detail & Related papers (2024-10-17T18:23:33Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Non-Hermitian extended midgap states and bound states in the continuum [0.0]
We find two flavours of bound states in the continuum, both stable even in the absence of chiral symmetry.
Results clarify fundamental aspects of topology, and symmetry in the light of different approaches to the anomalous non-Hermitan bulk-boundary correspondence.
arXiv Detail & Related papers (2023-10-27T16:58:04Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Symmetric non-Hermitian skin effect with emergent nonlocal
correspondence [10.704938459679978]
The non-Hermitian skin effect (NHSE) refers to that an extensive number of eigenstates of a non-Hermitian system are localized in open boundaries.
Here we predict a universal phenomenon that with local particle-hole(-like) symmetry the skin modes must be equally distributed on different boundaries.
We develop a generic theory for the emergent nonlocal symmetry-protected NHSE by connecting the non-Hermitian system to an extended Hermitian Hamiltonian in aruplicate Hilbert space.
arXiv Detail & Related papers (2023-02-26T02:37:55Z) - Statics and Dynamics of non-Hermitian Many-Body Localization [0.0]
Many-body localized phases retain memory of their initial conditions in disordered interacting systems.
We focus on the interacting Hatano-Nelson model which breaks unitarity via asymmetric hopping.
Our findings suggest the possibility of an intermediate dynamical regime in disordered open systems.
arXiv Detail & Related papers (2023-01-04T18:58:17Z) - Localization control born of intertwined quasiperiodicity and
non-Hermiticity [0.0]
We show for the first time that the intertwined quasiperiodicity and non-Hermiticity can give rise to striking effects.
In particular, we explore the wave function localization character in the Aubry-Andre-Fibonacci (AAF) model.
arXiv Detail & Related papers (2022-11-25T19:00:05Z) - Anomalously large relaxation times in dissipative lattice models beyond
the non-Hermitian skin effect [49.1574468325115]
We show for generic quantum non-Hermitian tight-binding models that relaxation of local observables are not controlled by the localization length.
interference between eigenvectors effectively makes the extreme localization of modes largely irrelevant to relaxation.
Our work highlights an important aspect of the non-Hermitian skin effect: the exceptional sensitivity to boundary conditions here necessarily takes a finite amount of time to manifest itself.
arXiv Detail & Related papers (2022-10-25T17:55:58Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Simulating non-Hermitian quasicrystals with single-photon quantum walks [8.119496606443793]
We experimentally simulate non-Hermitian quasicrystals using photonic quantum walks.
Our work opens the avenue of investigating the interplay of non-Hermiticity, quasiperiodicity, and spectral topology in open quantum systems.
arXiv Detail & Related papers (2021-12-30T12:19:42Z) - Observation of non-Hermitian topological Anderson insulator in quantum
dynamics [8.119496606443793]
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system.
We experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks.
arXiv Detail & Related papers (2021-08-02T18:00:18Z) - Acoustic anomaly detection via latent regularized gaussian mixture
generative adversarial networks [30.970377781506258]
It suffers from the class imbalance issue and the lacking in the abnormal instances.
In this paper, a novel Gaussian Mixture Generative Adrial Network (GMGAN) is proposed under semi-supervised learning framework.
Experiments show that our model has clear superiority over previous methods, and achieves the state-of-the-art results on DCASE dataset.
arXiv Detail & Related papers (2020-02-04T03:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.