Acoustic anomaly detection via latent regularized gaussian mixture
generative adversarial networks
- URL: http://arxiv.org/abs/2002.01107v2
- Date: Wed, 5 Feb 2020 02:27:12 GMT
- Title: Acoustic anomaly detection via latent regularized gaussian mixture
generative adversarial networks
- Authors: Chengwei Chen and Pan Chen and Lingyu Yang and Jinyuan Mo and Haichuan
Song and Yuan Xie and Lizhuang Ma
- Abstract summary: It suffers from the class imbalance issue and the lacking in the abnormal instances.
In this paper, a novel Gaussian Mixture Generative Adrial Network (GMGAN) is proposed under semi-supervised learning framework.
Experiments show that our model has clear superiority over previous methods, and achieves the state-of-the-art results on DCASE dataset.
- Score: 30.970377781506258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acoustic anomaly detection aims at distinguishing abnormal acoustic signals
from the normal ones. It suffers from the class imbalance issue and the lacking
in the abnormal instances. In addition, collecting all kinds of abnormal or
unknown samples for training purpose is impractical and timeconsuming. In this
paper, a novel Gaussian Mixture Generative Adversarial Network (GMGAN) is
proposed under semi-supervised learning framework, in which the underlying
structure of training data is not only captured in spectrogram reconstruction
space, but also can be further restricted in the space of latent representation
in a discriminant manner. Experiments show that our model has clear superiority
over previous methods, and achieves the state-of-the-art results on DCASE
dataset.
Related papers
- Ensembled Cold-Diffusion Restorations for Unsupervised Anomaly Detection [7.94529540044472]
Unsupervised Anomaly Detection (UAD) methods aim to identify anomalies in test samples comparing them with a normative distribution learned from a dataset known to be anomaly-free.
Approaches based on generative models offer interpretability by generating anomaly-free versions of test images, but are typically unable to identify subtle anomalies.
We present a novel method that combines the strengths of both strategies: a generative cold-diffusion pipeline that is trained with the objective of turning synthetically-corrupted images back to their normal, original appearance.
arXiv Detail & Related papers (2024-07-09T08:02:46Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Noisy-ArcMix: Additive Noisy Angular Margin Loss Combined With Mixup
Anomalous Sound Detection [5.1308092683559225]
Unsupervised anomalous sound detection (ASD) aims to identify anomalous sounds by learning the features of normal operational sounds and sensing their deviations.
Recent approaches have focused on the self-supervised task utilizing the classification of normal data, and advanced models have shown that securing representation space for anomalous data is important.
We propose a training technique aimed at ensuring intra-class compactness and increasing the angle gap between normal and abnormal samples.
arXiv Detail & Related papers (2023-10-10T07:04:36Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
Anomaly-Aware Bidirectional GANs [15.399369134281775]
The goal of anomaly detection is to identify anomalous samples from normal ones.
In this paper, a small number of anomalies are assumed to be available at the training stage, but they are assumed to be collected only from several anomaly types.
We propose to learn a probability distribution that can not only model the normal samples, but also guarantee to assign low density values for the collected anomalies.
arXiv Detail & Related papers (2022-04-28T08:12:49Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
arXiv Detail & Related papers (2020-01-18T03:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.