Causal DAG Summarization (Full Version)
- URL: http://arxiv.org/abs/2504.14937v1
- Date: Mon, 21 Apr 2025 08:01:32 GMT
- Title: Causal DAG Summarization (Full Version)
- Authors: Anna Zeng, Michael Cafarella, Batya Kenig, Markos Markakis, Brit Youngmann, Babak Salimi,
- Abstract summary: Causal inference aids researchers in discovering cause-and-effect relationships, leading to scientific insights.<n>Current methods for general-purpose graph summarization are inadequate for causal DAG summarization.<n>This paper proposes a causal graph summarization objective that balances graph simplification for better understanding while retaining essential causal information for reliable inference.
- Score: 12.231672388216653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal inference aids researchers in discovering cause-and-effect relationships, leading to scientific insights. Accurate causal estimation requires identifying confounding variables to avoid false discoveries. Pearl's causal model uses causal DAGs to identify confounding variables, but incorrect DAGs can lead to unreliable causal conclusions. However, for high dimensional data, the causal DAGs are often complex beyond human verifiability. Graph summarization is a logical next step, but current methods for general-purpose graph summarization are inadequate for causal DAG summarization. This paper addresses these challenges by proposing a causal graph summarization objective that balances graph simplification for better understanding while retaining essential causal information for reliable inference. We develop an efficient greedy algorithm and show that summary causal DAGs can be directly used for inference and are more robust to misspecification of assumptions, enhancing robustness for causal inference. Experimenting with six real-life datasets, we compared our algorithm to three existing solutions, showing its effectiveness in handling high-dimensional data and its ability to generate summary DAGs that ensure both reliable causal inference and robustness against misspecifications.
Related papers
- Your Assumed DAG is Wrong and Here's How To Deal With It [4.262342157729123]
We propose an efficient, gradient-based optimization method that provides bounds for causal queries over a collection of causal graphs.<n>Our approach aims at providing an easy-to-use and widely applicable rebuttal to the valid critique of What if your assumed DAG is wrong?'
arXiv Detail & Related papers (2025-02-24T10:31:12Z) - Discovery of Maximally Consistent Causal Orders with Large Language Models [0.8192907805418583]
Causal discovery is essential for understanding complex systems.<n>Traditional methods often rely on strong, untestable assumptions.<n>We propose a novel method to derive a class of acyclic tournaments.
arXiv Detail & Related papers (2024-12-18T16:37:51Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
We propose a dynamic causal space for DAG structure learning, coined CASPER.
It integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG.
arXiv Detail & Related papers (2023-06-05T12:20:40Z) - Large-Scale Differentiable Causal Discovery of Factor Graphs [3.8015092217142223]
We introduce the notion of factor directed acyclic graphs (f-DAGs) as a way to the search space to non-linear low-rank causal interaction models.
We propose a scalable implementation of f-DAG constrained causal discovery for high-dimensional interventional data.
arXiv Detail & Related papers (2022-06-15T21:28:36Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Federated Causal Discovery [74.37739054932733]
This paper develops a gradient-based learning framework named DAG-Shared Federated Causal Discovery (DS-FCD)
It can learn the causal graph without directly touching local data and naturally handle the data heterogeneity.
Extensive experiments on both synthetic and real-world datasets verify the efficacy of the proposed method.
arXiv Detail & Related papers (2021-12-07T08:04:12Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.