A Security Framework for General Blockchain Layer 2 Protocols
- URL: http://arxiv.org/abs/2504.14965v1
- Date: Mon, 21 Apr 2025 08:48:24 GMT
- Title: A Security Framework for General Blockchain Layer 2 Protocols
- Authors: Zeta Avarikioti, Matteo Maffei, Yuheng Wang,
- Abstract summary: We present the first general security framework for Layer 2 (L2) protocols.<n>Our framework is based on the IITM-based Universal Composability (iUC) framework.<n>We analyze an example from each of the three dominant L2 scaling paradigms: a payment channel (Brick), a sidechain (Liquid Network), and a rollup (Arbitrum)
- Score: 11.284365017329861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Layer 2 (L2) solutions are the cornerstone of blockchain scalability, enabling high-throughput and low-cost interactions by shifting execution off-chain while maintaining security through interactions with the underlying ledger. Despite their common goals, the principal L2 paradigms -- payment channels, rollups, and sidechains -- differ substantially in architecture and assumptions, making it difficult to comparatively analyze their security and trade-offs. To address this, we present the first general security framework for L2 protocols. Our framework is based on the IITM-based Universal Composability (iUC) framework, in which L2 protocols are modeled as stateful machines interacting with higher-level protocol users and the underlying ledger. The methodology defines a generic execution environment that captures ledger events, message passing, and adversarial scheduling, and characterizes security through trace-based predicates parameterized by adversarial capabilities and timing assumptions. By abstracting away from protocol-specific details while preserving critical interface and execution behavior, the framework enables modular, protocol-agnostic reasoning and composable security proofs across a wide range of L2 constructions. To demonstrate its applicability, we analyze an example from each of the three dominant L2 scaling paradigms: a payment channel (Brick), a sidechain (Liquid Network), and a rollup (Arbitrum). By instantiating each within our framework, we derive their security properties and expose trade-offs. These include the time for dispute resolution, distribution of off-chain storage and computation, and varying trust assumptions (e.g., reliance on honest parties or data availability). Our framework unifies the analysis of diverse L2 designs and pinpoints their strengths and limitations, providing a foundation for secure, systematic L2 development.
Related papers
- Where Should I Deploy My Contracts? A Practical Experience Report [0.0]
OP networks provide a reliable trust anchor to decentralized applications (DApps) backed by smart contracts.<n>Many Layer 2 (L2) rollup solutions emerged, meant to scale the base Layer 1 (L1) network.<n>We perform evaluations for two use cases of DApps: a voting DApp with high security demands, suited for L1 deployment, and a cost-sensitive supply chain DApp, where L2 can be an option.
arXiv Detail & Related papers (2025-04-13T06:44:43Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
Large language model (LLM) routing has emerged as a crucial strategy for balancing computational costs with performance.<n>We propose the DSC benchmark: Diverse, Simple, and Categorized, an evaluation framework that categorizes router performance across a broad spectrum of query types.
arXiv Detail & Related papers (2025-03-20T19:52:30Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees [3.6787328174619254]
Learning-to-Defer (L2D) facilitates optimal task allocation between AI systems and decision-makers.<n>This paper conducts the first comprehensive analysis of adversarial robustness in two-stage L2D frameworks.<n>We propose SARD, a robust, convex, deferral algorithm rooted in Bayes and $(mathcalR,mathcalG)$-consistency.
arXiv Detail & Related papers (2025-02-03T03:44:35Z) - Atomic Transfer Graphs: Secure-by-design Protocols for Heterogeneous Blockchain Ecosystems [7.312229214872541]
We propose a framework for generating secure-by-design protocols that realize common security and functionality goals.<n>The resulting protocols build upon Timelock Contracts (CTLCs), a novel minimal smart contract functionality.<n>Our framework is the first to provide generic and provably secure protocols for all these use cases while matching or improving the performance of existing use-case-specific protocols.
arXiv Detail & Related papers (2025-01-29T17:25:53Z) - MIETT: Multi-Instance Encrypted Traffic Transformer for Encrypted Traffic Classification [59.96233305733875]
Classifying traffic is essential for detecting security threats and optimizing network management.<n>We propose a Multi-Instance Encrypted Traffic Transformer (MIETT) to capture both token-level and packet-level relationships.<n>MIETT achieves results across five datasets, demonstrating its effectiveness in classifying encrypted traffic and understanding complex network behaviors.
arXiv Detail & Related papers (2024-12-19T12:52:53Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Towards a Formal Foundation for Blockchain Rollups [9.760484165522005]
ZK-Rollups aim to address challenges by processing transactions off-chain and validating them on the main chain.<n>This work presents a formal analysis using the Alloy specification language to examine and design key Layer 2 functionalities.<n>We propose enhanced models to strengthen security and censorship resistance, setting new standards for the security of rollups.
arXiv Detail & Related papers (2024-06-23T21:12:19Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Client-Server Identification Protocols with Quantum PUF [1.4174475093445233]
We propose two identification protocols based on the emerging hardware secure solutions, the quantum Physical Unclonable Functions (qPUFs)
The first protocol allows a low-resource party to prove its identity to a high-resource party and in the second protocol, it is vice-versa.
Unlike existing identification protocols based on Quantum Read-out PUFs which rely on the security against a specific family of attacks, our protocols provide provable exponential security against any Quantum Polynomial-Time adversary with resource-efficient parties.
arXiv Detail & Related papers (2020-06-08T12:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.