論文の概要: Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
- arxiv url: http://arxiv.org/abs/2504.14988v1
- Date: Mon, 21 Apr 2025 09:30:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 16:43:28.060448
- Title: Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
- Title(参考訳): 細粒度画像タスクにおける大規模視覚言語モデルのベンチマーク:包括的評価
- Authors: Hong-Tao Yu, Xiu-Shen Wei, Yuxin Peng, Serge Belongie,
- Abstract要約: 我々は349万の質問と332万の画像からなる総合的なきめ細かい評価ベンチマーク、すなわちFG-BMKを導入する。
本評価では,人間指向と機械指向の両方の観点からLVLMを体系的に検討する。
トレーニングパラダイム,モダリティアライメント,摂動感受性,および細粒度カテゴリー推論がタスクパフォーマンスに与える影響について,重要な知見を明らかにした。
- 参考スコア(独自算出の注目度): 53.84282335629258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 3.49 million questions and 3.32 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on eight representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.
- Abstract(参考訳): 近年のLVLM(Large Vision-Language Models)の進歩は、目覚ましいマルチモーダル認識能力を示し、大きな注目を集めている。
様々な評価研究が生まれており、LVLMは全体像と特殊タスクの両方で評価されているが、細粒度の画像タスクはコンピュータビジョンに基礎的なものであり、ほとんど探索されていない。
このギャップを埋めるため、我々はFG-BMKと呼ばれる3.49万の質問と3.32万の画像からなる総合的なきめ細かい評価ベンチマークを導入する。
本評価では,人間指向と機械指向の両方の観点からLVLMを体系的に検討し,その意味認識と細粒度特徴表現機能に着目した。
8つの代表的なLVLM/VLMに関する広範囲な実験を通して、トレーニングパラダイムの影響、モダリティアライメント、摂動感受性、およびタスクパフォーマンスに対するきめ細かなカテゴリ推論に関する重要な知見を明らかにした。
この研究は、現在のLVLMの限界について重要な洞察を与え、より先進的なLVLMの開発における将来のデータ構築とモデル設計のためのガイダンスを提供する。
私たちのコードはオープンソースで、https://github.com/SEU-VIPGroup/FG-BMK.comで公開しています。
関連論文リスト
- Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation [38.20492321295552]
VLM(Vision-Language Model)は、OV(Open-Vocabulary)オブジェクトの検出とセグメンテーションタスクにおいて広く採用されている。
それらはOV関連タスクを約束しているにもかかわらず、従来のビジョンタスクの有効性は評価されていない。
論文 参考訳(メタデータ) (2025-04-13T08:28:13Z) - Are Large Vision Language Models Good Game Players? [25.49713745405194]
大規模視覚言語モデル(LVLM)は、視覚情報とテキスト情報の両方について理解と推論において顕著な能力を示した。
既存のLVLMの評価手法は、主にVisual Question Answeringのようなベンチマークに基づいており、LVLMの能力の全範囲を捉えていないことが多い。
構造化環境におけるLVLMの認知・推論スキルを総合的に評価するためのゲームベース評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T07:29:03Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
因子関連認知テスト(FRCT)から得られた新しいベンチマークであるVisFactorを紹介する。
VisFactorは視覚関連FRCTサブテストのデジタル化を行い、基本的な視覚認知タスク間でMLLMを体系的に評価する。
GPT-4o, Gemini-Pro, Qwen-VLなどの最先端MLLMの総合評価を行った。
論文 参考訳(メタデータ) (2025-02-23T04:21:32Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
6つのタスクカテゴリにまたがる18のベンチマークを用いて,異なるエンコーダ層からの視覚的特徴の寄与について検討した。
この結果から,多層構造はタスク依存性の相補的な長所を提供し,均一な融合が最適以下の性能をもたらすことが明らかとなった。
テキスト命令に基づいて動的に多層視覚特徴を統合する命令誘導型視覚アグリゲータを提案する。
論文 参考訳(メタデータ) (2024-12-26T05:41:31Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
大規模言語とビジョンモデル(LLVM)は、その顕著な一般化性能のために、大きな注目と開発努力を受けている。
高度な推論タスクの達成にもかかわらず、基本的な知覚関連タスクのパフォーマンスは驚くほど低いままである。
LLVMの最も一般的なファミリー(LLaVA)を10評価ベンチマークで評価することで、この問題を調査する。
論文 参考訳(メタデータ) (2024-10-07T05:07:01Z) - Large Vision-Language Models as Emotion Recognizers in Context Awareness [14.85890824622433]
文脈対応感情認識(CAER)は、様々な文脈から感情を知覚する必要がある複雑で重要なタスクである。
以前のアプローチは主に、イメージから感情的な手がかりを抽出する洗練されたアーキテクチャを設計することに焦点を当てていた。
本稿では,LVLM(Large Vision-Language Models)を活用したCAERタスクの実現の可能性について,体系的に検討する。
論文 参考訳(メタデータ) (2024-07-16T01:28:06Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - LVLM-eHub: A Comprehensive Evaluation Benchmark for Large
Vision-Language Models [55.304181390027274]
本稿では,LVLM評価ハブ(LVLM-eHub)の構築により,一般公開された大規模マルチモーダルモデルの包括的評価を行う。
我々のLVLM-eHubは、InstructBLIPやMiniGPT-4などの代表的LVLMから成り、定量的能力評価とオンラインアリーナプラットフォームによって徹底的に評価されている。
この研究は、いくつかの革新的な発見を明らかにしている。まず、インストラクタBLIPのような膨大なドメイン内データを持つ命令調整型LVLMは、多くの既存のタスクを過度にオーバーフィットさせ、オープンワールドのシナリオでは一般化が不十分である。
論文 参考訳(メタデータ) (2023-06-15T16:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。