Understanding Accuracy-Fairness Trade-offs in Re-ranking through Elasticity in Economics
- URL: http://arxiv.org/abs/2504.14991v1
- Date: Mon, 21 Apr 2025 09:41:08 GMT
- Title: Understanding Accuracy-Fairness Trade-offs in Re-ranking through Elasticity in Economics
- Authors: Chen Xu, Jujia Zhao, Wenjie Wang, Liang Pang, Jun Xu, Tat-Seng Chua, Maarten de Rijke,
- Abstract summary: Fairness is an increasingly important factor in re-ranking tasks.<n>The accuracy-fairness trade-off parallels the coupling of the commodity tax transfer process.<n>We introduce the Elastic Fairness Curve (EF-Curve) as an evaluation framework.<n>We also propose ElasticRank, a fair re-ranking algorithm that employs elasticity calculations to adjust inter-item distances.
- Score: 96.68144350976637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness is an increasingly important factor in re-ranking tasks. Prior work has identified a trade-off between ranking accuracy and item fairness. However, the underlying mechanisms are still not fully understood. An analogy can be drawn between re-ranking and the dynamics of economic transactions. The accuracy-fairness trade-off parallels the coupling of the commodity tax transfer process. Fairness considerations in re-ranking, similar to a commodity tax on suppliers, ultimately translate into a cost passed on to consumers. Analogously, item-side fairness constraints result in a decline in user-side accuracy. In economics, the extent to which commodity tax on the supplier (item fairness) transfers to commodity tax on users (accuracy loss) is formalized using the notion of elasticity. The re-ranking fairness-accuracy trade-off is similarly governed by the elasticity of utility between item groups. This insight underscores the limitations of current fair re-ranking evaluations, which often rely solely on a single fairness metric, hindering comprehensive assessment of fair re-ranking algorithms. Centered around the concept of elasticity, this work presents two significant contributions. We introduce the Elastic Fairness Curve (EF-Curve) as an evaluation framework. This framework enables a comparative analysis of algorithm performance across different elasticity levels, facilitating the selection of the most suitable approach. Furthermore, we propose ElasticRank, a fair re-ranking algorithm that employs elasticity calculations to adjust inter-item distances within a curved space. Experiments on three widely used ranking datasets demonstrate its effectiveness and efficiency.
Related papers
- Bayes-Optimal Fair Classification with Multiple Sensitive Features [24.42403136889636]
We characterize the Bayes-optimal fair classifier for multiple sensitive features under general approximate fairness measures.
We show that these approximate measures for existing group fairness notions, including Demographic Parity, are linear transformations of selection rates for specific groups.
Our framework applies to both attribute-aware and attribute-blind settings and can accommodate composite fairness notions like Equalized Odds.
arXiv Detail & Related papers (2025-05-01T16:12:12Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.<n>We show that enforcing a causal constraint often reduces the disparity between demographic groups.<n>We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - A Taxation Perspective for Fair Re-ranking [61.946428892727795]
We introduce a new fair re-ranking method named Tax-rank, which levies taxes based on the difference in utility between two items.
Our model Tax-rank offers a superior tax policy for fair re-ranking, theoretically demonstrating both continuity and controllability over accuracy loss.
arXiv Detail & Related papers (2024-04-27T08:21:29Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - A Theoretical Approach to Characterize the Accuracy-Fairness Trade-off
Pareto Frontier [42.18013955576355]
The accuracy-fairness trade-off has been frequently observed in the literature of fair machine learning.
This work seeks to develop a theoretical framework by characterizing the shape of the accuracy-fairness trade-off.
The proposed research enables an in-depth understanding of the accuracy-fairness trade-off, pushing current fair machine-learning research to a new frontier.
arXiv Detail & Related papers (2023-10-19T14:35:26Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
We study the effect of varying data biases on the accuracy and fairness of fair classifiers.
Our experiments show how to integrate a measure of data bias risk in the existing fairness dashboards for real-world deployments.
arXiv Detail & Related papers (2023-02-12T13:04:46Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Conformalized Fairness via Quantile Regression [8.180169144038345]
We propose a novel framework to learn a real-valued quantile function under the fairness requirement of Demographic Parity.
We establish theoretical guarantees of distribution-free coverage and exact fairness for the induced prediction interval constructed by fair quantiles.
Our results show the model's ability to uncover the mechanism underlying the fairness-accuracy trade-off in a wide range of societal and medical applications.
arXiv Detail & Related papers (2022-10-05T04:04:15Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Controlling Fairness and Bias in Dynamic Learning-to-Rank [31.41843594914603]
We propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data.
The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility.
In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.
arXiv Detail & Related papers (2020-05-29T17:57:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.