Stay Hungry, Stay Foolish: On the Extended Reading Articles Generation with LLMs
- URL: http://arxiv.org/abs/2504.15013v1
- Date: Mon, 21 Apr 2025 10:35:48 GMT
- Title: Stay Hungry, Stay Foolish: On the Extended Reading Articles Generation with LLMs
- Authors: Yow-Fu Liou, Yu-Chien Tang, An-Zi Yen,
- Abstract summary: This research explores the potential of Large Language Models (LLMs) to streamline the creation of educational materials.<n>Using the TED-Ed Dig Deeper sections as an initial exploration, we investigate how supplementary articles can be enriched with contextual knowledge.<n> Experimental evaluations demonstrate that our model produces high-quality content and accurate course suggestions.
- Score: 3.2962799070467432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The process of creating educational materials is both time-consuming and demanding for educators. This research explores the potential of Large Language Models (LLMs) to streamline this task by automating the generation of extended reading materials and relevant course suggestions. Using the TED-Ed Dig Deeper sections as an initial exploration, we investigate how supplementary articles can be enriched with contextual knowledge and connected to additional learning resources. Our method begins by generating extended articles from video transcripts, leveraging LLMs to include historical insights, cultural examples, and illustrative anecdotes. A recommendation system employing semantic similarity ranking identifies related courses, followed by an LLM-based refinement process to enhance relevance. The final articles are tailored to seamlessly integrate these recommendations, ensuring they remain cohesive and informative. Experimental evaluations demonstrate that our model produces high-quality content and accurate course suggestions, assessed through metrics such as Hit Rate, semantic similarity, and coherence. Our experimental analysis highlight the nuanced differences between the generated and existing materials, underscoring the model's capacity to offer more engaging and accessible learning experiences. This study showcases how LLMs can bridge the gap between core content and supplementary learning, providing students with additional recommended resources while also assisting teachers in designing educational materials.
Related papers
- Examining GPT's Capability to Generate and Map Course Concepts and Their Relationship [0.2309018557701645]
This paper investigates the potential of LLMs in automatically generating course concepts and their relations.<n>We provide GPT with the course information with different levels of detail, thereby generating high-quality course concepts and identifying their relations.<n>Our results demonstrate the viability of LLMs as a tool for supporting educational content selection and delivery.
arXiv Detail & Related papers (2025-04-11T05:03:12Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.<n>We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Effective LLM Knowledge Learning via Model Generalization [73.16975077770765]
Large language models (LLMs) are trained on enormous documents that contain extensive world knowledge.
It is still not well-understood how knowledge is acquired via autoregressive pre-training.
In this paper, we focus on understanding and improving LLM knowledge learning.
arXiv Detail & Related papers (2025-03-05T17:56:20Z) - Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
The article sheds light on the mechanics of in-context learning and a spectrum of fine-tuning approaches.
It explores how LLMs can be more closely aligned with human preferences through innovative reinforcement learning frameworks.
The ethical dimensions of LLM deployment are discussed, underscoring the need for mindful and responsible application.
arXiv Detail & Related papers (2024-04-18T08:01:20Z) - Using Generative Text Models to Create Qualitative Codebooks for Student Evaluations of Teaching [0.0]
Student evaluations of teaching (SETs) are important sources of feedback for educators.
A collection of SETs can also be useful to administrators as signals for courses or entire programs.
We discuss a novel method for analyzing SETs using natural language processing (NLP) and large language models (LLMs)
arXiv Detail & Related papers (2024-03-18T17:21:35Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Can We Trust AI-Generated Educational Content? Comparative Analysis of
Human and AI-Generated Learning Resources [4.528957284486784]
Large language models (LLMs) appear to offer a promising solution to the rapid creation of learning materials at scale.
We compare the quality of resources generated by an LLM with those created by students as part of a learnersourcing activity.
Our results show that the quality of AI-generated resources, as perceived by students, is equivalent to the quality of resources generated by their peers.
arXiv Detail & Related papers (2023-06-18T09:49:21Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - ONCE: Boosting Content-based Recommendation with Both Open- and
Closed-source Large Language Models [39.193602991105]
Large language models (LLMs) possess deep semantic comprehension and extensive knowledge from pretraining.
We explore the potential of leveraging both open- and closed-source LLMs to enhance content-based recommendation.
We observed a significant relative improvement of up to 19.32% compared to existing state-of-the-art recommendation models.
arXiv Detail & Related papers (2023-05-11T04:51:21Z) - Knowledge-Aware Meta-learning for Low-Resource Text Classification [87.89624590579903]
This paper studies a low-resource text classification problem and bridges the gap between meta-training and meta-testing tasks.
We propose KGML to introduce additional representation for each sentence learned from the extracted sentence-specific knowledge graph.
arXiv Detail & Related papers (2021-09-10T07:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.