論文の概要: Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models
- arxiv url: http://arxiv.org/abs/2504.15026v1
- Date: Mon, 21 Apr 2025 11:18:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 16:39:59.419423
- Title: Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models
- Title(参考訳): Gaussian Shading++: 拡散モデルのためのパフォーマンス-ロスレス画像透かしの現実的なデプロイチャレンジを再考する
- Authors: Zijin Yang, Xin Zhang, Kejiang Chen, Kai Zeng, Qiyi Yao, Han Fang, Weiming Zhang, Nenghai Yu,
- Abstract要約: 著作権保護と不適切なコンテンツ生成は、拡散モデルの実装に課題をもたらす。
本研究では,実世界の展開に適した拡散モデル透かし手法を提案する。
Gaussian Shading++はパフォーマンスのロスレス性を維持するだけでなく、ロバスト性の観点からも既存のメソッドよりも優れています。
- 参考スコア(独自算出の注目度): 66.54457339638004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
- Abstract(参考訳): 著作権保護と不適切なコンテンツ生成に関する倫理的懸念は、拡散モデルの実践的な実装に課題をもたらす。
効果的な解決策の1つは、生成された画像の透かしである。
既存の手法は主に、透かしの埋め込みがモデルの性能を低下させないことに焦点を当てている。
しかし、ウォーターマークキー管理の複雑さ、ユーザ定義の生成パラメータ、任意のサードパーティによる検証の難しさなど、実際のデプロイメントシナリオにおける重要な課題を見落としていることが多い。
この問題に対処するために,実世界の展開に適した拡散モデル透かし手法であるGaussian Shading++を提案する。
本研究では、疑似ランダム誤り訂正符号を利用して、透かし擬似ランダム化に必要なランダムなシードを符号化し、固定された透かしキーの下で性能を損なわない透かしを実現し、キー管理課題を克服する二重チャネル設計を提案する。
さらに、生成と反転の間に導入された歪みを付加的な白色ガウス雑音チャネルとしてモデル化し、抽出中に新しいソフト決定復号法を用い、生成パラメータが変化しても強靭性を確保する。
サードパーティによる検証を可能にするために,モデル逆転機能が完全に開示された場合でも,偽造攻撃に対する一定のレベルの抵抗を提供する公開鍵シグネチャを組み込んだ。
広範な実験によると、Gaussian Shading++はパフォーマンスのロスレス性を維持するだけでなく、ロバスト性の観点からも既存のメソッドよりも優れており、現実のデプロイメントにおいてより実用的なソリューションである。
関連論文リスト
- TriniMark: A Robust Generative Speech Watermarking Method for Trinity-Level Attribution [3.1682080884953736]
本稿では,生成したコンテンツを認証するための生成的textbfspeech wattextbfermarking法(TriniMark)を提案する。
まず、音声の時間領域特徴に透かしを埋め込む構造軽量透かしエンコーダを設計する。
ビットワイドウォーターマーク回復のためのウォーターマーク復号器において、時間対応ゲート畳み込みネットワークを巧みに設計する。
論文 参考訳(メタデータ) (2025-04-29T08:23:28Z) - SEAL: Semantic Aware Image Watermarking [26.606008778795193]
本稿では,生成した画像のセマンティック情報を透かしに直接埋め込む新しい透かし手法を提案する。
キーパターンは、局所性に敏感なハッシュを用いて画像のセマンティック埋め込みから推測することができる。
以上の結果から,画像生成モデルによるリスクを軽減できる可能性が示唆された。
論文 参考訳(メタデータ) (2025-03-15T15:29:05Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Robustness of Watermarking on Text-to-Image Diffusion Models [9.277492743469235]
本稿では,透かし埋め込みとテキスト・ツー・イメージ・ジェネレーション処理を統合することで生成する透かしの堅牢性について検討する。
生成型透かし法は, 識別器による攻撃やエッジ予測に基づく攻撃のエッジ情報に基づく操作など, 直接回避攻撃に対して堅牢であるが, 悪意のある微調整には脆弱であることがわかった。
論文 参考訳(メタデータ) (2024-08-04T13:59:09Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
潜在生成モデルによって生成された画像に関する潜在的な誤用に関する懸念が持ち上がっている。
検査されたモデルの生成された画像をトレースするために,レイトタントトラッカーと呼ばれる潜時反転に基づく手法を提案する。
提案手法は,検査したモデルと他の画像から生成された画像とを高精度かつ効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-05-22T05:33:47Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
著作権保護と不適切なコンテンツ生成は、拡散モデルの実装に課題をもたらす。
本研究では,性能ロスレスかつトレーニング不要な拡散モデル透かし手法を提案する。
論文 参考訳(メタデータ) (2024-04-07T13:30:10Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
ホワイトボックス攻撃に対するロバスト性を向上したGANのための新しいマルチビット・ボックスフリー透かし手法を提案する。
透かしは、GANトレーニング中に余分な透かし損失項を追加することで埋め込む。
その結果,透かしの存在が画像の品質に与える影響は無視できることがわかった。
論文 参考訳(メタデータ) (2023-10-25T18:38:10Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。