論文の概要: A Call for New Recipes to Enhance Spatial Reasoning in MLLMs
- arxiv url: http://arxiv.org/abs/2504.15037v1
- Date: Mon, 21 Apr 2025 11:48:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 15:13:48.958573
- Title: A Call for New Recipes to Enhance Spatial Reasoning in MLLMs
- Title(参考訳): MLLMにおける空間推論の促進のための新しいレシピ
- Authors: Huanyu Zhang, Chengzu Li, Wenshan Wu, Shaoguang Mao, Yan xia, Ivan Vulić, Zhang Zhang, Liang Wang, Tieniu Tan, Furu Wei,
- Abstract要約: MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
- 参考スコア(独自算出の注目度): 85.67171333213301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks. However, recent studies have exposed critical limitations in their spatial reasoning capabilities. This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world, thereby limiting their broader applications. We argue that spatial reasoning capabilities will not naturally emerge from merely scaling existing architectures and training methodologies. Instead, this challenge demands dedicated attention to fundamental modifications in the current MLLM development approach. In this position paper, we first establish a comprehensive framework for spatial reasoning within the context of MLLMs. We then elaborate on its pivotal role in real-world applications. Through systematic analysis, we examine how individual components of the current methodology-from training data to reasoning mechanisms-influence spatial reasoning capabilities. This examination reveals critical limitations while simultaneously identifying promising avenues for advancement. Our work aims to direct the AI research community's attention toward these crucial yet underexplored aspects. By highlighting these challenges and opportunities, we seek to catalyze progress toward achieving human-like spatial reasoning capabilities in MLLMs.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
しかし、最近の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限し、より広範な応用を制限する。
空間的推論能力は、既存のアーキテクチャやトレーニング方法論を単に拡張することから自然に現れるものではない、と我々は主張する。
代わりに、この挑戦は現在のMLLM開発アプローチの基本的な変更に注意を払っている。
本稿ではまず,MLLMの文脈内での空間的推論のための包括的枠組みを確立する。
次に、現実世界のアプリケーションにおいて、その重要な役割について詳しく説明します。
組織的な分析を通じて,学習データから推論機構による空間的推論能力まで,現在の方法論の個々の構成要素がどのように機能するかを検討する。
本試験は, 進展に期待できる経路を同時に特定しながら, 限界を明らかにするものである。
我々の研究は、AI研究コミュニティがこれらの重要で未調査の側面に注意を向けることを目的としています。
これらの課題と機会を強調することで、MLLMにおける人間のような空間推論能力の実現に向けた進歩を触媒することを目指す。
関連論文リスト
- A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Position: Multimodal Large Language Models Can Significantly Advance Scientific Reasoning [51.11965014462375]
MLLM(Multimodal Large Language Models)は、テキスト、画像、その他のモダリティを統合する。
本稿では,MLLMが数学,物理,化学,生物学などの分野にまたがる科学的推論を著しく前進させることができることを論じる。
論文 参考訳(メタデータ) (2025-02-05T04:05:27Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning [19.399925987942204]
視覚言語モデル (VLM) は、幅広い下流タスクにおいて印象的なパフォーマンスを示している。
ほとんどのタスクは、2次元(2D)環境でのコア空間推論能力に依存している。
本稿では,合成データ生成を用いて視覚言語モデル(VLM)を3つの基本的な空間的能力で監視するフレームワークであるSparkleを紹介する。
論文 参考訳(メタデータ) (2024-10-21T16:26:09Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。