A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
- URL: http://arxiv.org/abs/2504.15105v1
- Date: Mon, 21 Apr 2025 13:54:33 GMT
- Title: A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
- Authors: Yurun Wang, Zerong Qi, Shujun Fu, Mingzheng Hu,
- Abstract summary: Existing deep learning-based enhancement methods fall short of practical application requirements.<n>We propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies.<n> Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
- Score: 0.5356944479760104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent fingerprint enhancement is a critical step in the process of latent fingerprint identification. Existing deep learning-based enhancement methods still fall short of practical application requirements, particularly in restoring low-quality fingerprint regions. Recognizing that different regions of latent fingerprints require distinct enhancement strategies, we propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies. Furthermore, to improve the generalization capability of the network, we integrate orientation field and minutiae-related modules into TBSFNet and introduce a Multi-Level Feature Guidance Network (MLFGNet). Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
Related papers
- Attentional Graph Meta-Learning for Indoor Localization Using Extremely Sparse Fingerprints [17.159049478569173]
Fingerprint-based indoor localization is often labor-intensive due to the need for dense grids and repeated measurements across time and space.<n>Existing benchmark methods primarily rely on the measured fingerprints, while neglecting valuable spatial and environmental characteristics.<n>We propose a systematic integration of an Attentional Graph Neural Network (AGNN) model, capable of learning spatial adjacency relationships and aggregating information from neighboring fingerprints.
arXiv Detail & Related papers (2025-04-07T08:37:18Z) - Spatial-Geometry Enhanced 3D Dynamic Snake Convolutional Neural Network for Hyperspectral Image Classification [12.168520751389622]
Deep neural networks face several challenges in hyperspectral image classification.<n>These include complex and sparse ground object distributions, small clustered structures, and elongated multi-branch features.<n>This paper proposes a Spatial-Geometry Enhanced 3D Dynamic Snake Network (SG-DSCNet) based on an improved 3D-DenseNet model.
arXiv Detail & Related papers (2025-04-06T12:21:39Z) - Threshold Attention Network for Semantic Segmentation of Remote Sensing Images [3.5449012582104795]
Self-attention mechanism (SA) is an effective approach for designing segmentation networks.<n>We propose a novel threshold attention mechanism (TAM) for semantic segmentation.<n>Based on TAM, we present a threshold attention network (TANet) for semantic segmentation.
arXiv Detail & Related papers (2025-01-14T10:09:55Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Finger-UNet: A U-Net based Multi-Task Architecture for Deep Fingerprint
Enhancement [0.0]
fingerprint enhancement plays a vital role in the early stages of the fingerprint recognition/verification pipeline.
We suggest intuitive modifications to U-Net to enhance low-quality fingerprints effectively.
We replace regular convolutions with depthwise separable convolutions, which significantly reduces the memory footprint of the model.
arXiv Detail & Related papers (2023-10-01T09:49:10Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
We propose a novel Global Extraction Local Exploration Network (GeleNet) for Optical Remote Sensing Images (ORSI-SOD)
Specifically, GeleNet first adopts a transformer backbone to generate four-level feature embeddings with global long-range dependencies.
Extensive experiments on three public datasets demonstrate that the proposed GeleNet outperforms relevant state-of-the-art methods.
arXiv Detail & Related papers (2023-09-15T07:14:43Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
Soft biometrics such as gait are widely used with face in surveillance tasks like person recognition and re-identification.
We propose a novel adaptive multi-biometric fusion strategy for the dynamic incorporation of gait and face biometric cues by leveraging keyless attention deep neural networks.
arXiv Detail & Related papers (2023-03-24T05:28:35Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
We improve initial studies on the use of vision transformers (ViT) for biometric recognition, including fingerprint recognition.
We propose a realignment strategy using local embeddings extracted from intermediate feature maps within the networks to refine the global embeddings in low certainty situations.
This strategy can be applied as a wrapper to any existing deep learning network (including attention-based, CNN-based, or both) to boost its performance.
arXiv Detail & Related papers (2022-11-25T05:10:39Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.