Threshold Attention Network for Semantic Segmentation of Remote Sensing Images
- URL: http://arxiv.org/abs/2501.07984v1
- Date: Tue, 14 Jan 2025 10:09:55 GMT
- Title: Threshold Attention Network for Semantic Segmentation of Remote Sensing Images
- Authors: Wei Long, Yongjun Zhang, Zhongwei Cui, Yujie Xu, Xuexue Zhang,
- Abstract summary: Self-attention mechanism (SA) is an effective approach for designing segmentation networks.
We propose a novel threshold attention mechanism (TAM) for semantic segmentation.
Based on TAM, we present a threshold attention network (TANet) for semantic segmentation.
- Score: 3.5449012582104795
- License:
- Abstract: Semantic segmentation of remote sensing images is essential for various applications, including vegetation monitoring, disaster management, and urban planning. Previous studies have demonstrated that the self-attention mechanism (SA) is an effective approach for designing segmentation networks that can capture long-range pixel dependencies. SA enables the network to model the global dependencies between the input features, resulting in improved segmentation outcomes. However, the high density of attentional feature maps used in this mechanism causes exponential increases in computational complexity. Additionally, it introduces redundant information that negatively impacts the feature representation. Inspired by traditional threshold segmentation algorithms, we propose a novel threshold attention mechanism (TAM). This mechanism significantly reduces computational effort while also better modeling the correlation between different regions of the feature map. Based on TAM, we present a threshold attention network (TANet) for semantic segmentation. TANet consists of an attentional feature enhancement module (AFEM) for global feature enhancement of shallow features and a threshold attention pyramid pooling module (TAPP) for acquiring feature information at different scales for deep features. We have conducted extensive experiments on the ISPRS Vaihingen and Potsdam datasets. The results demonstrate the validity and superiority of our proposed TANet compared to the most state-of-the-art models.
Related papers
- AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation [4.618389486337933]
We propose AMMUNet, a UNet-based framework that employs multi-scale attention map merging.
The proposed AMMM effectively combines multi-scale attention maps into a unified representation using a fixed mask template.
We show that our approach achieves remarkable mean intersection over union (mIoU) scores of 75.48% on the Vaihingen dataset and an exceptional 77.90% on the Potsdam dataset.
arXiv Detail & Related papers (2024-04-20T15:23:15Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images [9.398340832493457]
We propose a Linear Attention Mechanism (LAM) to address this issue.
LAM is approximately equivalent to dot-product attention with computational efficiency.
We design a Multi-stage Attention ResU-Net for semantic segmentation from fine-resolution remote sensing images.
arXiv Detail & Related papers (2020-11-29T07:24:21Z) - Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images [10.835342317692884]
The accuracy of semantic segmentation in remote sensing images has been increased significantly by deep convolutional neural networks.
This paper proposes a Multi-Attention-Network (MANet) to address these issues.
A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention.
arXiv Detail & Related papers (2020-09-03T09:08:02Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
We propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations.
We introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism.
arXiv Detail & Related papers (2020-01-09T07:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.