The Iterative Chainlet Partitioning Algorithm for the Traveling Salesman Problem with Drone and Neural Acceleration
- URL: http://arxiv.org/abs/2504.15147v1
- Date: Mon, 21 Apr 2025 14:51:15 GMT
- Title: The Iterative Chainlet Partitioning Algorithm for the Traveling Salesman Problem with Drone and Neural Acceleration
- Authors: Jae Hyeok Lee, Minjun Kim, Jinkyoo Park, Changhyun Kwon,
- Abstract summary: Iterative Chainlet Partitioning (ICP) algorithm and its neural acceleration for solving the Traveling Salesman Problem with Drone (TSP-D)<n>ICP outperforms existing algorithms in both solution quality and computational time.
- Score: 19.41080715658528
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study introduces the Iterative Chainlet Partitioning (ICP) algorithm and its neural acceleration for solving the Traveling Salesman Problem with Drone (TSP-D). The proposed ICP algorithm decomposes a TSP-D solution into smaller segments called chainlets, each optimized individually by a dynamic programming subroutine. The chainlet with the highest improvement is updated and the procedure is repeated until no further improvement is possible. The number of subroutine calls is bounded linearly in problem size for the first iteration and remains constant in subsequent iterations, ensuring algorithmic scalability. Empirical results show that ICP outperforms existing algorithms in both solution quality and computational time. Tested over 1,059 benchmark instances, ICP yields an average improvement of 2.75% in solution quality over the previous state-of-the-art algorithm while reducing computational time by 79.8%. The procedure is deterministic, ensuring reliability without requiring multiple runs. The subroutine is the computational bottleneck in the already efficient ICP algorithm. To reduce the necessity of subroutine calls, we integrate a graph neural network (GNN) to predict incremental improvements. We demonstrate that the resulting Neuro ICP (NICP) achieves substantial acceleration while maintaining solution quality. Compared to ICP, NICP reduces the total computational time by 49.7%, while the objective function value increase is limited to 0.12%. The framework's adaptability to various operational constraints makes it a valuable foundation for developing efficient algorithms for truck-drone synchronized routing problems.
Related papers
- Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Optimization-Based GenQSGD for Federated Edge Learning [12.371264770814097]
We present a generalized parallel mini-batch convergence descent (SGD) algorithm for federated learning (FL)
We optimize the algorithm parameters to minimize the energy cost under the time convergence error.
Results demonstrate the significant gains over existing FL algorithms.
arXiv Detail & Related papers (2021-10-25T14:25:11Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - An Efficient Algorithm for Cooperative Semi-Bandits [0.0]
We introduce Coop-FTPL, a cooperative version of the well-known Follow The Perturbed Leader algorithm.
We show that the expected regret of our algorithm after T time steps is of order QT log(k)(k$alpha$ 1 /Q + m), where Q is the total activation probability mass.
arXiv Detail & Related papers (2020-10-05T07:08:26Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Fast and Robust Iterative Closest Point [32.42799285301607]
Iterative Closest Point (ICP) is a fundamental technique for rigid registration between two point sets.
Recent work such as Sparse ICP achieves robustness via sparsity optimization at the cost of computational speed.
We show that the classical point-to-point ICP can be treated as a majorization-minimization (MM) algorithm, and propose an Anderson acceleration approach to speed up its convergence.
arXiv Detail & Related papers (2020-07-15T11:32:53Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
We consider the task of decentralized minimization of the sum of smooth strongly convex functions stored across the nodes of a network.
We propose two new algorithms for this decentralized optimization problem and equip them with complexity guarantees.
arXiv Detail & Related papers (2020-06-21T11:23:20Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.