Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
- URL: http://arxiv.org/abs/2504.15192v1
- Date: Mon, 21 Apr 2025 16:01:51 GMT
- Title: Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
- Authors: Yaqian Chen, Lin Li, Hanxue Gu, Haoyu Dong, Derek L. Nguyen, Allan D. Kirk, Maciej A. Mazurowski, E. Shelley Hwang,
- Abstract summary: Mammographic breast density is a well-established risk factor for breast cancer.<n>Recently there has been interest in breast MRI as an adjunct to mammography.<n>Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets.
- Score: 7.821989375292391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
Related papers
- Deep Learning Predicts Mammographic Breast Density in Clinical Breast Ultrasound Images [0.0]
mammographic breast density is one of the strongest risk factors for breast cancer.
Breast ultrasound (BUS) is an alternative breast cancer screening modality.
The purpose of this study was to explore an artificial intelligence (AI) model to predict BI-RADS mammographic breast density from BUS imaging.
arXiv Detail & Related papers (2024-10-31T21:28:20Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
We extend a state-of-the-art machine learning model to ingest an arbitrary number of longitudinal mammograms and predict future breast cancer risk.
Our results show that longer histories (e.g., up to four prior annual mammograms) can significantly boost the accuracy of predicting future breast cancer risk.
arXiv Detail & Related papers (2024-04-29T19:52:09Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Multi-Head Feature Pyramid Networks for Breast Mass Detection [48.24995569980701]
We propose the multi-head feature pyramid module (MHFPN) to solve the problem of unbalanced focus of target boxes during feature map fusion.
Experimental studies show that, comparing to the SOTA detection baselines, our method improves by 6.58% (in AP@50) and 5.4% (in TPR@50) on the commonly used INbreast dataset.
arXiv Detail & Related papers (2023-02-22T03:02:52Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - A multi-reconstruction study of breast density estimation using Deep
Learning [0.9449650062296825]
Breast density estimation is one of the key tasks performed during a screening exam.
Deep-learning studies for breast density estimation use only a single modality for training a neural network.
In this paper, we show that a neural network trained on all the modalities at once performs better than a neural network trained on any single modality.
arXiv Detail & Related papers (2022-02-16T18:34:08Z) - Deep-LIBRA: Artificial intelligence method for robust quantification of
breast density with independent validation in breast cancer risk assessment [2.0369879867185143]
Current federal legislation mandates reporting of breast density for all women undergoing breast screening.
We introduce an artificial intelligence (AI) method to estimate breast percentage density (PD) from digital mammograms.
arXiv Detail & Related papers (2020-11-13T15:21:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.