High-fidelity parallel entangling gates on a neutral atom quantum
computer
- URL: http://arxiv.org/abs/2304.05420v1
- Date: Tue, 11 Apr 2023 18:00:04 GMT
- Title: High-fidelity parallel entangling gates on a neutral atom quantum
computer
- Authors: Simon J. Evered, Dolev Bluvstein, Marcin Kalinowski, Sepehr Ebadi, Tom
Manovitz, Hengyun Zhou, Sophie H. Li, Alexandra A. Geim, Tout T. Wang, Nishad
Maskara, Harry Levine, Giulia Semeghini, Markus Greiner, Vladan Vuletic,
Mikhail D. Lukin
- Abstract summary: We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
- Score: 41.74498230885008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to perform entangling quantum operations with low error rates in
a scalable fashion is a central element of useful quantum information
processing. Neutral atom arrays have recently emerged as a promising quantum
computing platform, featuring coherent control over hundreds of qubits and
any-to-any gate connectivity in a flexible, dynamically reconfigurable
architecture. The major outstanding challenge has been to reduce errors in
entangling operations mediated through Rydberg interactions. Here we report the
realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms
in parallel, surpassing the surface code threshold for error correction. Our
method employs fast single-pulse gates based on optimal control, atomic dark
states to reduce scattering, and improvements to Rydberg excitation and atom
cooling. We benchmark fidelity using several methods based on repeated gate
applications, characterize the physical error sources, and outline future
improvements. Finally, we generalize our method to design entangling gates
involving a higher number of qubits, which we demonstrate by realizing
low-error three-qubit gates. By enabling high-fidelity operation in a scalable,
highly connected system, these advances lay the groundwork for large-scale
implementation of quantum algorithms, error-corrected circuits, and digital
simulations.
Related papers
- Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Coupler-Assisted Controlled-Phase Gate with Enhanced Adiabaticity [1.9476527809254969]
High-fidelity two-qubit entangling gates are essential building blocks for fault-tolerant quantum computers.
We present a theoretical study, explaining the origin of the high-contrast ZZ interaction.
We expect the scheme to potentially achieve a two-qubit gate error rate near $10-5$, which would drastically speed up the progress towards fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-06-01T18:50:17Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Systematic error tolerant multiqubit holonomic entangling gates [11.21912040660678]
We propose to realize high-fidelity holonomic $(N+1)$-qubit controlled gates using Rydberg atoms confined in optical arrays or superconducting circuits.
Our study paves a new route to build robust multiqubit gates with Rydberg atoms trapped in optical arrays or with superconducting circuits.
arXiv Detail & Related papers (2020-12-05T03:00:47Z) - High-fidelity, high-scalability two-qubit gate scheme for
superconducting qubits [16.01171409402694]
We experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit.
The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%.
Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
arXiv Detail & Related papers (2020-06-21T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.