Post-Convergence Sim-to-Real Policy Transfer: A Principled Alternative to Cherry-Picking
- URL: http://arxiv.org/abs/2504.15414v1
- Date: Mon, 21 Apr 2025 19:48:05 GMT
- Title: Post-Convergence Sim-to-Real Policy Transfer: A Principled Alternative to Cherry-Picking
- Authors: Dylan Khor, Bowen Weng,
- Abstract summary: This paper addresses the post-convergence sim-to-real transfer problem by introducing a worst-case performance transference optimization approach.<n>Experiments demonstrate its effectiveness in transferring RL-based locomotion policies from simulation to real-world laboratory tests.
- Score: 5.027571997864706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based approaches, particularly reinforcement learning (RL), have become widely used for developing control policies for autonomous agents, such as locomotion policies for legged robots. RL training typically maximizes a predefined reward (or minimizes a corresponding cost/loss) by iteratively optimizing policies within a simulator. Starting from a randomly initialized policy, the empirical expected reward follows a trajectory with an overall increasing trend. While some policies become temporarily stuck in local optima, a well-defined training process generally converges to a reward level with noisy oscillations. However, selecting a policy for real-world deployment is rarely an analytical decision (i.e., simply choosing the one with the highest reward) and is instead often performed through trial and error. To improve sim-to-real transfer, most research focuses on the pre-convergence stage, employing techniques such as domain randomization, multi-fidelity training, adversarial training, and architectural innovations. However, these methods do not eliminate the inevitable convergence trajectory and noisy oscillations of rewards, leading to heuristic policy selection or cherry-picking. This paper addresses the post-convergence sim-to-real transfer problem by introducing a worst-case performance transference optimization approach, formulated as a convex quadratic-constrained linear programming problem. Extensive experiments demonstrate its effectiveness in transferring RL-based locomotion policies from simulation to real-world laboratory tests.
Related papers
- Safe Continual Domain Adaptation after Sim2Real Transfer of Reinforcement Learning Policies in Robotics [3.7491742648742568]
Domain randomization is a technique to facilitate the transfer of policies from simulation to real-world robotic applications.<n>We propose a method to enable safe deployment-time policy adaptation in real-world robot control.
arXiv Detail & Related papers (2025-03-13T23:28:11Z) - Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone [72.17534881026995]
We develop an offline and online fine-tuning approach called policy-agnostic RL (PA-RL)<n>We show the first result that successfully fine-tunes OpenVLA, a 7B generalist robot policy, autonomously with Cal-QL, an online RL fine-tuning algorithm.
arXiv Detail & Related papers (2024-12-09T17:28:03Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - IOB: Integrating Optimization Transfer and Behavior Transfer for
Multi-Policy Reuse [50.90781542323258]
Reinforcement learning (RL) agents can transfer knowledge from source policies to a related target task.
Previous methods introduce additional components, such as hierarchical policies or estimations of source policies' value functions.
We propose a novel transfer RL method that selects the source policy without training extra components.
arXiv Detail & Related papers (2023-08-14T09:22:35Z) - Coherent Soft Imitation Learning [17.345411907902932]
Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) of the policy or inverse reinforcement learning (IRL) of the reward.
This work derives an imitation method that captures the strengths of both BC and IRL.
arXiv Detail & Related papers (2023-05-25T21:54:22Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning.
In this paper, we propose our closed-form policy improvement operators.
We empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
arXiv Detail & Related papers (2022-11-29T06:29:26Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - First Order Constrained Optimization in Policy Space [19.00289722198614]
We propose a novel approach called First Order Constrained Optimization in Policy Space (FOCOPS)
FOCOPS maximizes an agent's overall reward while ensuring the agent satisfies a set of cost constraints.
We provide empirical evidence that our simple approach achieves better performance on a set of constrained robotics locomotive tasks.
arXiv Detail & Related papers (2020-02-16T05:07:17Z) - Local Policy Optimization for Trajectory-Centric Reinforcement Learning [31.495672846638346]
A lot of robotic manipulation tasks are trajectory-centric, and thus do not require a global model or policy.
We present a method for simultaneous trajectory and local stabilizing policy optimization to generate local policies for trajectory-centric model-based reinforcement learning.
arXiv Detail & Related papers (2020-01-22T15:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.