論文の概要: LLM-Assisted Translation of Legacy FORTRAN Codes to C++: A Cross-Platform Study
- arxiv url: http://arxiv.org/abs/2504.15424v1
- Date: Mon, 21 Apr 2025 20:34:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 01:31:54.935827
- Title: LLM-Assisted Translation of Legacy FORTRAN Codes to C++: A Cross-Platform Study
- Title(参考訳): LLMによるC++へのレガシーフォートランコードの翻訳:クロスプラットフォーム研究
- Authors: Nishath Rajiv Ranasinghe, Shawn M. Jones, Michal Kucer, Ayan Biswas, Daniel O'Malley, Alexander Buschmann Most, Selma Liliane Wanna, Ajay Sreekumar,
- Abstract要約: 大規模言語モデル(LLM)は、科学的なコンピュータコードの生成と翻訳にますます活用されている。
本稿では,エージェントワークフロー構築に向けたステップとして,ALMを用いたFortranからC++への翻訳の適用性を検討した。
我々は、翻訳されたC++コードのコンパイル精度を統計的に定量化し、LLM翻訳コードの人間翻訳C++コードとの類似度を測定し、FortranからC++翻訳の出力類似度を統計的に定量化した。
- 参考スコア(独自算出の注目度): 38.73914653312889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly being leveraged for generating and translating scientific computer codes by both domain-experts and non-domain experts. Fortran has served as one of the go to programming languages in legacy high-performance computing (HPC) for scientific discoveries. Despite growing adoption, LLM-based code translation of legacy code-bases has not been thoroughly assessed or quantified for its usability. Here, we studied the applicability of LLM-based translation of Fortran to C++ as a step towards building an agentic-workflow using open-weight LLMs on two different computational platforms. We statistically quantified the compilation accuracy of the translated C++ codes, measured the similarity of the LLM translated code to the human translated C++ code, and statistically quantified the output similarity of the Fortran to C++ translation.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ドメインエキスパートと非ドメイン専門家の両方によって科学的なコンピュータコードの生成と翻訳にますます活用されている。
Fortranは、科学的な発見のためのレガシー高性能コンピューティング(HPC)におけるプログラミング言語の1つとして機能している。
採用が増えているにもかかわらず、LLMベースのレガシコードベースのコード翻訳は、そのユーザビリティについて、十分に評価され、定量化されていない。
本稿では,オープンウェイト LLM を用いたエージェント・ワークフロー構築のステップとして,FORTRAN を C++ に変換した LLM の適用性を検討した。
我々は、翻訳されたC++コードのコンパイル精度を統計的に定量化し、LLM翻訳コードの人間翻訳C++コードとの類似度を測定し、FortranからC++翻訳の出力類似度を統計的に定量化した。
関連論文リスト
- Fortran2CPP: Automating Fortran-to-C++ Translation using LLMs via Multi-Turn Dialogue and Dual-Agent Integration [10.985254527043429]
私たちのデータセットは、コード翻訳、コンパイル、実行、ユニットテスト、エラー修正を含む、フィードバック決定をキャプチャする1.7kの対話で構成されています。
このデータセットを使用して、CodeBLEUスコアの最大3.31倍の改善と、コンパイル成功率の92%向上を実現した。
論文 参考訳(メタデータ) (2024-12-27T18:06:25Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming [15.391781573025787]
我々は,プログラミング言語とHPC拡張間の翻訳に特化して設計されたエンコーダ・デコーダモデルであるCodeRosettaを紹介する。
CodeRosettaはC++から並列C++翻訳タスクで評価される。
以上の結果から,CodeRosettaはC++の最先端のベースラインよりも翻訳に優れていた。
論文 参考訳(メタデータ) (2024-10-27T17:34:07Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - Towards Translating Real-World Code with LLMs: A Study of Translating to Rust [13.743967357458287]
大規模言語モデル(LLM)は、ほとんどのプログラミング言語でコードを記述する能力のため、コード翻訳において有望であることを示す。
実世界のオープンソースプロジェクトから抽出したコードについて検討する。
FLOURINEは、差分ファジィを使用して、Rust翻訳が元のソースプログラムと同等のI/Oかどうかをチェックする、エンドツーエンドのコード変換ツールである。
論文 参考訳(メタデータ) (2024-05-19T10:54:03Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
本研究では、コンパイラ中間表現(IR)を活用して、Code-LMの多言語機能を改善する可能性について検討する。
まず,約400万のソースコードファイルからなる並列データセットであるSLTransをコンパイルする。
次に、SLTransにおける因果言語モデリングトレーニングを継続して実施し、Code-LMはIR言語を学習せざるを得なかった。
IRCoderと呼ばれる結果のモデルは、さまざまなコード生成タスクやメトリクスに対して、サイズと一貫性のあるゲインを表示します。
論文 参考訳(メタデータ) (2024-03-06T17:52:08Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - Scope is all you need: Transforming LLMs for HPC Code [5.0227775038998415]
本稿では,HPCにおける前処理やコンパイル中心のタスクに特化して設計された,Tokompilerという新しいトークン機構を提案する。
Tokompilerは言語プリミティブの知識を活用して、言語指向のトークンを生成し、コード構造をコンテキスト対応で理解する。
その結果、Tokompilerは従来のトークン化ツールに比べてコード補完精度と意味理解を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-08-18T10:12:03Z) - Lost in Translation: A Study of Bugs Introduced by Large Language Models
while Translating Code [5.915447908295047]
コード翻訳における一般LLMとコードLLMの能力について,大規模な実証的研究を行った。
私たちの研究は、3つのベンチマークと2つの実世界のプロジェクトからの1,700のコードサンプルの翻訳に関するものです。
LLMの正しい翻訳は2.1%から47.3%であることがわかった。
論文 参考訳(メタデータ) (2023-08-06T13:33:13Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。