Long-lived entanglement of a spin-qubit register in silicon photonics
- URL: http://arxiv.org/abs/2504.15467v1
- Date: Mon, 21 Apr 2025 22:29:18 GMT
- Title: Long-lived entanglement of a spin-qubit register in silicon photonics
- Authors: Hanbin Song, Xueyue Zhang, Lukasz Komza, Niccolo Fiaschi, Yihuang Xiong, Yiyang Zhi, Scott Dhuey, Adam Schwartzberg, Thomas Schenkel, Geoffroy Hautier, Zi-Huai Zhang, Alp Sipahigil,
- Abstract summary: T center in silicon is an emerging spin-photon interface that combines telecom O-band optical transitions and a long-lived electron spin.<n>A three-qubit register based on the electron spin of a T center coupled to a hydrogen and a silicon nuclear spin is demonstrated.<n>Results show that T centers can realize a long-lived multi-qubit register with an optical interface in silicon photonics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color centers provide an optical interface to quantum registers based on electron and nuclear spin qubits in solids. The T center in silicon is an emerging spin-photon interface that combines telecom O-band optical transitions and a long-lived electron spin in a scalable photonics platform. In this work, we demonstrate the initialization, coherent control, and state readout of a three-qubit register based on the electron spin of a T center coupled to a hydrogen and a silicon nuclear spin. The spin register exhibits long spin echo coherence times of $0.41(2)$ ms for the electron spin, $112(12)$ ms for the hydrogen nuclear spin, and $67(7)$ ms for the silicon nuclear spin. We use nuclear-nuclear two-qubit gates to generate entanglement between the two nuclear spins with a fidelity of $F=0.77(3)$ and a coherence time of $T^*_2=2.60(8)$ ms. Our results show that T centers can realize a long-lived multi-qubit register with an optical interface in silicon photonics.
Related papers
- Control of solid-state nuclear spin qubits using an electron spin-1/2 [0.0]
We show improved control of single nuclear spins by an electron spin-1/2 using Dynamically Decoupled Radio Frequency gates.
Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-1/2 systems.
arXiv Detail & Related papers (2024-09-13T16:51:16Z) - Single-Shot Readout of a Nuclear Spin in Silicon Carbide [6.676809051180745]
We report the first realization of single-shot readout for a nuclear spin in silicon carbide.
With a dual-step readout scheme, we obtain a readout fidelity as high as 99.5% with a success efficiency of 89.8%.
Our work complements the experimental toolbox of harnessing both electron and nuclear spins in SiC for future quantum networks.
arXiv Detail & Related papers (2024-01-09T10:15:23Z) - Measuring nuclear spin qubits by qudit-enhanced spectroscopy in Silicon
Carbide [0.0]
Nuclear spins with hyperfine coupling to single electron spins are highly valuable quantum bits.
In this work we probe and characterise the particularly rich nuclear spin environment around single silicon vacancy color-centers (V2) in 4H-SiC.
arXiv Detail & Related papers (2023-10-24T06:59:39Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Coherent control of a nuclear spin via interactions with a rare-earth
ion in the solid-state [0.0]
Individually addressed Er$3+$ ions in solid-state hosts are promising resources for quantum repeaters.
While the Er$3+$ electron spin provides a spin-photon interface, ancilla nuclear spins could enable multi-qubit registers with longer storage times.
We demonstrate coherent coupling between the electron spin of a single Er$3+$ ion and a single $I=1/2$ nuclear spin in the solid-state host crystal.
arXiv Detail & Related papers (2022-09-12T21:44:21Z) - Robust millisecond coherence times of erbium electron spins [7.862622132486542]
We report GHz-range electron spin transitions of $167mathrmEr3+$ in yttrium oxide.
We find paramagnetic impurities are the dominant source of decoherence.
These coherence lifetimes are among the longest found in crystalline hosts.
arXiv Detail & Related papers (2022-07-06T14:29:11Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Entanglement and control of single quantum memories in isotopically
engineered silicon carbide [89.42372489576658]
Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits.
We demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register.
arXiv Detail & Related papers (2020-05-15T15:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.