論文の概要: Agent for User: Testing Multi-User Interactive Features in TikTok
- arxiv url: http://arxiv.org/abs/2504.15474v1
- Date: Mon, 21 Apr 2025 22:50:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 01:07:25.002021
- Title: Agent for User: Testing Multi-User Interactive Features in TikTok
- Title(参考訳): Agent for User: TikTokでマルチユーザインタラクティブ機能をテストする
- Authors: Sidong Feng, Changhao Du, Huaxiao Liu, Qingnan Wang, Zhengwei Lv, Gang Huo, Xu Yang, Chunyang Chen,
- Abstract要約: マルチユーザ対話型アプリ機能のテストを自動化するために,LLM(Large Language Models)を利用した新しいマルチエージェント手法を提案する。
仮想デバイスファームを構築し、所定のマルチユーザ対話タスクに必要なデバイス数を割り当てる。
各デバイスに対して、ユーザをシミュレートするLCMベースのエージェントをデプロイし、ユーザインタラクションを模倣する。
- 参考スコア(独自算出の注目度): 25.10099707365039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: TikTok, a widely-used social media app boasting over a billion monthly active users, requires effective app quality assurance for its intricate features. Feature testing is crucial in achieving this goal. However, the multi-user interactive features within the app, such as live streaming, voice calls, etc., pose significant challenges for developers, who must handle simultaneous device management and user interaction coordination. To address this, we introduce a novel multi-agent approach, powered by the Large Language Models (LLMs), to automate the testing of multi-user interactive app features. In detail, we build a virtual device farm that allocates the necessary number of devices for a given multi-user interactive task. For each device, we deploy an LLM-based agent that simulates a user, thereby mimicking user interactions to collaboratively automate the testing process. The evaluations on 24 multi-user interactive tasks within the TikTok app, showcase its capability to cover 75% of tasks with 85.9% action similarity and offer 87% time savings for developers. Additionally, we have also integrated our approach into the real-world TikTok testing platform, aiding in the detection of 26 multi-user interactive bugs.
- Abstract(参考訳): TikTokは10億人の月間アクティブユーザーを抱えるソーシャルメディアアプリだが、複雑な機能のためには効果的なアプリ品質保証が必要である。
この目標を達成するためには、機能テストが不可欠です。
しかし、ライブストリーミングやボイスコールなど、アプリのマルチユーザインタラクティブな機能は、デバイス管理とユーザインタラクションの調整を同時に行う必要がある開発者には、大きな課題をもたらしている。
そこで本稿では,Large Language Models (LLMs) を利用したマルチエージェントアプローチを導入し,マルチユーザ対話型アプリ機能のテストを自動化する。
より詳しくは、マルチユーザ対話タスクに必要なデバイス数を割り当てる仮想デバイスファームを構築する。
各デバイスに対して、ユーザをシミュレートするLCMベースのエージェントをデプロイし、ユーザインタラクションを模倣して、テストプロセスの協調的自動化を行う。
TikTokアプリ内の24のマルチユーザ対話タスクの評価では、75%のタスクを85.9%のアクション類似性でカバーし、開発者に87%の時間節約を提供する能力を示している。
さらに、我々のアプローチを現実世界のTikTokテストプラットフォームに統合し、26のマルチユーザインタラクティブバグの検出を支援しました。
関連論文リスト
- Collaborative Instance Object Navigation: Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues [54.81155589931697]
協調インスタンスオブジェクトナビゲーション(CoIN)は、エージェントがターゲットインスタンスに関する不確実性を積極的に解決する新しいタスク設定である。
未認識者に対するエージェント・ユーザインタラクション(AIUTA)の新たな学習自由化手法を提案する。
まず、オブジェクト検出時に、セルフクエチオナーモデルがエージェント内で自己対話を開始し、完全かつ正確な観察記述を得る。
インタラクショントリガーモジュールは、人間に質問するか、継続するか、ナビゲーションを停止するかを決定する。
論文 参考訳(メタデータ) (2024-12-02T08:16:38Z) - AutoGLM: Autonomous Foundation Agents for GUIs [51.276965515952]
我々は、グラフィカルユーザインタフェース(GUI)を介してデジタルデバイスを自律的に制御するための基礎エージェントとして設計された、ChatGLMファミリーの新しいシリーズであるAutoGLMを紹介する。
実世界のGUIインタラクションのための実践的基礎エージェントシステムとしてAutoGLMを開発した。
評価では、AutoGLMが複数のドメインにまたがって有効であることを示す。
論文 参考訳(メタデータ) (2024-10-28T17:05:10Z) - SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
スマートフォンエージェントは、ユーザーがデバイスを効率的に制御するのを助けるためにますます重要になっている。
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agent。
論文 参考訳(メタデータ) (2024-10-19T17:28:48Z) - AppAgent v2: Advanced Agent for Flexible Mobile Interactions [46.789563920416626]
本研究は,モバイル機器向けの新しいLLMベースのマルチモーダルエージェントフレームワークを提案する。
我々のエージェントは、様々なアプリケーションにまたがる適応性を高めるフレキシブルなアクション空間を構築する。
本研究は,実世界のシナリオにおいて,フレームワークの優れた性能を実証し,その有効性を確認した。
論文 参考訳(メタデータ) (2024-08-05T06:31:39Z) - AppAgent: Multimodal Agents as Smartphone Users [23.318925173980446]
我々のフレームワークは、エージェントが簡易なアクション空間を通じてスマートフォンアプリケーションを操作できるようにする。
エージェントは、自律的な探索または人間のデモを観察して、新しいアプリをナビゲートし、使用することを学ぶ。
エージェントの実用性を実証するため、10種類のアプリケーションで50以上のタスクを広範囲にテストした。
論文 参考訳(メタデータ) (2023-12-21T11:52:45Z) - Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
マルチユーザMulti-User MultiWOZデータセットを2つのユーザと1つのエージェント間のタスク指向対話としてリリースする。
これらの対話は、タスク指向のシナリオにおける協調的な意思決定の興味深いダイナミクスを反映している。
本稿では,複数ユーザ間のタスク指向のチャットを簡潔なタスク指向のクエリとして書き換える,マルチユーザコンテキストクエリ書き換えの新しいタスクを提案する。
論文 参考訳(メタデータ) (2023-10-31T14:12:07Z) - You Only Look at Screens: Multimodal Chain-of-Action Agents [37.118034745972956]
Auto-GUIは、インターフェースと直接対話するマルチモーダルソリューションである。
そこで本研究では,エージェントが実行すべきアクションを決定するためのチェーン・オブ・アクション手法を提案する。
我々は,30$Kのユニークな命令を持つ新しいデバイス制御ベンチマークAITWに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-09-20T16:12:32Z) - MUG: Interactive Multimodal Grounding on User Interfaces [12.035123646959669]
本稿では,ユーザとエージェントがインタフェース画面上で協調作業を行うマルチモーダルグラウンドのための対話型タスクMUGを提案する。
ユーザがコマンドを与え、エージェントがコマンドに応答する。MUGはエージェントの応答を見る際に、エージェントがそのアクションを洗練または修正するための追加コマンドを与えるように、複数のラウンドのインタラクションを可能にする。
論文 参考訳(メタデータ) (2022-09-29T21:08:18Z) - Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward
Decomposition [64.06167416127386]
本稿では,システムとユーザの両方をダイアログエージェントとみなすマルチエージェントダイアログポリシー学習を提案する。
2人のエージェントが互いに相互作用し、同時に一緒に学習されます。
その結果,本手法がシステムポリシとユーザポリシを同時に構築できることが示唆された。
論文 参考訳(メタデータ) (2020-04-08T04:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。