Interpretable Deep Learning for Polar Mechanistic Reaction Prediction
- URL: http://arxiv.org/abs/2504.15539v1
- Date: Tue, 22 Apr 2025 02:31:23 GMT
- Title: Interpretable Deep Learning for Polar Mechanistic Reaction Prediction
- Authors: Ryan J. Miller, Alexander E. Dashuta, Brayden Rudisill, David Van Vranken, Pierre Baldi,
- Abstract summary: We introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset.<n>We train compare a range of machine learning models, including transformer-based, graph-based and two-step siamese architectures.<n>Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework.
- Score: 43.95903801494905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting chemical reactions is essential for driving innovation in synthetic chemistry, with broad applications in medicine, manufacturing, and agriculture. At the same time, reaction prediction is a complex problem which can be both time-consuming and resource-intensive for chemists to solve. Deep learning methods offer an appealing solution by enabling high-throughput reaction prediction. However, many existing models are trained on the US Patent Office dataset and treat reactions as overall transformations: mapping reactants directly to products with limited interpretability or mechanistic insight. To address this, we introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset, which represents reactions as polar elementary steps that capture electron flow and mechanistic detail. To further expand model coverage and improve generalization, we augment PMechDB with a diverse set of combinatorially generated reactions. We train and compare a range of machine learning models, including transformer-based, graph-based, and two-step siamese architectures. Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework to leverage the accuracy of transformer architectures, while filtering away "alchemical" products using the two-step network predictions. For evaluation, we use a test split of the PMechDB dataset and additionally curate a human benchmark dataset consisting of complete mechanistic pathways extracted from an organic chemistry textbook. Our hybrid model achieves a top-10 accuracy of 94.9% on the PMechDB test set and a target recovery rate of 84.9% on the pathway dataset.
Related papers
- Towards Large-scale Chemical Reaction Image Parsing via a Multimodal Large Language Model [4.860497022313892]
We introduce the Reaction Image Multimodal large language model (RxnIM) to parse chemical reaction images into machine-readable data.<n> RxnIM extracts key chemical components from reaction images and interprets the textual content that describes reaction conditions.<n>Our approach achieves excellent performance, with an average F1 score of 88% on various benchmarks, surpassing literature methods by 5%.
arXiv Detail & Related papers (2025-03-11T08:11:23Z) - Chemical knowledge-informed framework for privacy-aware retrosynthesis learning [60.93245342663455]
Current machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models.
This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries.
In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models.
arXiv Detail & Related papers (2025-02-26T13:13:24Z) - Chimera: Accurate retrosynthesis prediction by ensembling models with diverse inductive biases [3.885174353072695]
Planning and conducting chemical syntheses remains a major bottleneck in the discovery of functional small molecules.<n>Inspired by how chemists use different strategies to ideate reactions, we propose Chimera: a framework for building highly accurate reaction models.
arXiv Detail & Related papers (2024-12-06T18:55:19Z) - Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlign is a novel chemical reaction representation learning model for various organic reaction-related tasks.<n>By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction.<n>We introduce a reaction-center-aware attention mechanism that enables the model to concentrate on key functional groups.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots [4.362338454684645]
We develop an interpretable attention-based GNN that achieved near-unity and 96% accuracy for reaction step classification.
Our model adeptly identifies key atom(s) even from out-of-distribution classes.
This generalizabilty allows for the inclusion of new reaction types in a modular fashion, thus will be of value to experts for understanding the reactivity of new molecules.
arXiv Detail & Related papers (2024-07-14T05:53:18Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery.
While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset.
We construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps.
arXiv Detail & Related papers (2024-03-07T15:26:23Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.