Chimera: Accurate retrosynthesis prediction by ensembling models with diverse inductive biases
- URL: http://arxiv.org/abs/2412.05269v1
- Date: Fri, 06 Dec 2024 18:55:19 GMT
- Title: Chimera: Accurate retrosynthesis prediction by ensembling models with diverse inductive biases
- Authors: Krzysztof Maziarz, Guoqing Liu, Hubert Misztela, Aleksei Kornev, Piotr GaiĆski, Holger Hoefling, Mike Fortunato, Rishi Gupta, Marwin Segler,
- Abstract summary: Planning and conducting chemical syntheses remains a major bottleneck in the discovery of functional small molecules.
Inspired by how chemists use different strategies to ideate reactions, we propose Chimera: a framework for building highly accurate reaction models.
- Score: 3.885174353072695
- License:
- Abstract: Planning and conducting chemical syntheses remains a major bottleneck in the discovery of functional small molecules, and prevents fully leveraging generative AI for molecular inverse design. While early work has shown that ML-based retrosynthesis models can predict reasonable routes, their low accuracy for less frequent, yet important reactions has been pointed out. As multi-step search algorithms are limited to reactions suggested by the underlying model, the applicability of those tools is inherently constrained by the accuracy of retrosynthesis prediction. Inspired by how chemists use different strategies to ideate reactions, we propose Chimera: a framework for building highly accurate reaction models that combine predictions from diverse sources with complementary inductive biases using a learning-based ensembling strategy. We instantiate the framework with two newly developed models, which already by themselves achieve state of the art in their categories. Through experiments across several orders of magnitude in data scale and time-splits, we show Chimera outperforms all major models by a large margin, owing both to the good individual performance of its constituents, but also to the scalability of our ensembling strategy. Moreover, we find that PhD-level organic chemists prefer predictions from Chimera over baselines in terms of quality. Finally, we transfer the largest-scale checkpoint to an internal dataset from a major pharmaceutical company, showing robust generalization under distribution shift. With the new dimension that our framework unlocks, we anticipate further acceleration in the development of even more accurate models.
Related papers
- Challenging reaction prediction models to generalize to novel chemistry [12.33727805025678]
We report a series of evaluations of a prototypical SMILES-based deep learning model.
First, we illustrate how performance on randomly sampled datasets is overly optimistic compared to performance when generalizing to new patents or new authors.
Second, we conduct time splits that evaluate how models perform when tested on reactions published in years after those in their training set, mimicking real-world deployment.
arXiv Detail & Related papers (2025-01-11T23:49:14Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery.
While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset.
We construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps.
arXiv Detail & Related papers (2024-03-07T15:26:23Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Holistic chemical evaluation reveals pitfalls in reaction prediction
models [0.3065062372337749]
We propose a new assessment scheme that builds on current approaches, steering towards a more holistic evaluation.
ChoRISO is a curated dataset along with multiple tailored splits to recreate chemically relevant scenarios.
Our work paves the way towards robust prediction models that can ultimately accelerate chemical discovery.
arXiv Detail & Related papers (2023-12-14T14:54:28Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Data Transfer Approaches to Improve Seq-to-Seq Retrosynthesis [1.6449390849183363]
Retrosynthesis is a problem to infer reactant compounds to synthesize a given product compound through chemical reactions.
Recent studies on retrosynthesis focus on proposing more sophisticated prediction models.
The dataset to feed the models also plays an essential role in achieving the best generalizing models.
arXiv Detail & Related papers (2020-10-02T05:27:51Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
Retrosynthesis prediction is a fundamental problem in organic synthesis.
This paper introduces a graph-based approach that capitalizes on the idea that the graph topology of precursor molecules is largely unaltered during a chemical reaction.
Our model achieves a top-1 accuracy of $53.7%$, outperforming previous template-free and semi-template-based methods.
arXiv Detail & Related papers (2020-06-12T09:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.