論文の概要: RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
- arxiv url: http://arxiv.org/abs/2504.15541v1
- Date: Tue, 22 Apr 2025 02:36:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 22:42:00.771165
- Title: RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
- Title(参考訳): リスクネット:長距離シナリオにおける自律運転のための対話型リスク予測
- Authors: Qichao Liu, Heye Huang, Shiyue Zhao, Lei Shi, Soyoung Ahn, Xiaopeng Li,
- Abstract要約: RiskNetは自動運転車のリスク予測フレームワークである。
決定論的リスクモデリングと確率論的行動予測を統合し、包括的リスク評価を行う。
リアルタイムでシナリオ適応型のリスク予測をサポートし、不確実な運転環境全体にわたって強力な一般化を示す。
- 参考スコア(独自算出の注目度): 6.024186631622774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring the safety of autonomous vehicles (AVs) in long-tail scenarios remains a critical challenge, particularly under high uncertainty and complex multi-agent interactions. To address this, we propose RiskNet, an interaction-aware risk forecasting framework, which integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment. At its core, RiskNet employs a field-theoretic model that captures interactions among ego vehicle, surrounding agents, and infrastructure via interaction fields and force. This model supports multidimensional risk evaluation across diverse scenarios (highways, intersections, and roundabouts), and shows robustness under high-risk and long-tail settings. To capture the behavioral uncertainty, we incorporate a graph neural network (GNN)-based trajectory prediction module, which learns multi-modal future motion distributions. Coupled with the deterministic risk field, it enables dynamic, probabilistic risk inference across time, enabling proactive safety assessment under uncertainty. Evaluations on the highD, inD, and rounD datasets, spanning lane changes, turns, and complex merges, demonstrate that our method significantly outperforms traditional approaches (e.g., TTC, THW, RSS, NC Field) in terms of accuracy, responsiveness, and directional sensitivity, while maintaining strong generalization across scenarios. This framework supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments. It offers a unified foundation for safety-critical decision-making in long-tail scenarios.
- Abstract(参考訳): 長距離シナリオにおける自動運転車(AV)の安全性の確保は、特に高い不確実性と複雑なマルチエージェントインタラクションの下では、依然として重要な課題である。
そこで我々は,リスク予測フレームワークであるリスクネットを提案する。これは,決定論的リスクモデリングと確率論的行動予測を統合し,包括的リスク評価を行う。
RiskNetのコアとなるのは、エゴ車、周辺エージェント、およびインフラストラクチャ間のインタラクションを、相互作用フィールドと力によってキャプチャする、フィールド理論モデルである。
このモデルは、様々なシナリオ(ハイウェイ、交差点、ラウンドアバウンド)にわたる多次元リスク評価をサポートし、ハイリスクおよびロングテール設定下で堅牢性を示す。
動作の不確実性を捉えるため,多モーダルな将来の動き分布を学習するグラフニューラルネットワーク(GNN)ベースの軌道予測モジュールを組み込んだ。
決定論的リスクフィールドと組み合わせることで、時間にわたって動的で確率的なリスク推論を可能にし、不確実性の下で積極的な安全評価を可能にする。
高D,inD,rounDデータセットの評価は,車線変化,ターン,複雑なマージにまたがって,従来の手法(例えば,TTC,THW,RSS,NCフィールド)よりも精度,応答性,指向性に優れており,シナリオ間の強い一般化を維持している。
このフレームワークは、リアルタイムでシナリオ適応的なリスク予測をサポートし、不確実な運転環境における強力な一般化を実証する。
ロングテールシナリオにおける安全クリティカルな意思決定のための統一された基盤を提供する。
関連論文リスト
- Understanding Driver Cognition and Decision-Making Behaviors in High-Risk Scenarios: A Drift Diffusion Perspective [20.184300244352286]
本稿では,運転行動の個人差と共通点を統合する認知決定フレームワークを提案する。
ドリフト拡散モデルに基づく認知的意思決定モデルを導入し、リスクの高い環境での一般的な意思決定メカニズムを捉える。
提案モデルでは,緊急時の認知反応と意思決定行動を正確に予測する。
論文 参考訳(メタデータ) (2025-03-16T20:11:22Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Risk-Aware Vehicle Trajectory Prediction Under Safety-Critical Scenarios [25.16311876790003]
本稿では,安全クリティカルシナリオに適したリスク対応軌道予測フレームワークを提案する。
安全クリティカルな軌道予測データセットと調整された評価指標を導入する。
その結果,モデルの性能が向上し,ほとんどの指標が大幅に改善した。
論文 参考訳(メタデータ) (2024-07-18T13:00:01Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Extreme Risk Mitigation in Reinforcement Learning using Extreme Value
Theory [10.288413564829579]
リスク認識の重要な側面は、破滅的な結果をもたらす可能性のある非常に稀なリスクイベント(リワード)をモデル化することである。
リスクを意識したRL手法は存在するが、リスク回避のレベルは状態-作用値関数の推定の精度に大きく依存している。
本研究では、状態-作用値関数分布によって予測される極端な値の予測を精査することに着目し、非常に稀で危険な事象に直面した場合のRLエージェントのレジリエンスを高めることを提案する。
論文 参考訳(メタデータ) (2023-08-24T18:23:59Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
ディープニューラルネットワークにリスク認識を提供する既存のアルゴリズムは複雑でアドホックである。
ここでは、リスク認識でモデルを拡張するためのフレームワークであるcapsaを紹介します。
論文 参考訳(メタデータ) (2023-08-01T02:07:47Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
リスクアセスメントは自動運転車の開発と検証の中心的な要素である。
Time Headway (TH) と Time-To-Contact (TTC) は一般的にリスクメトリクスとして使われ、発生確率と質的な関係を持つ。
本稿では,生存分析に基づく確率論的状況リスクモデルを提案し,それを自然に知覚・時間的・行動的不確実性に組み込むよう拡張する。
論文 参考訳(メタデータ) (2023-03-13T15:22:51Z) - I Know You Can't See Me: Dynamic Occlusion-Aware Safety Validation of
Strategic Planners for Autonomous Vehicles Using Hypergames [12.244501203346566]
我々は,状況リスクを評価するための,新しいマルチエージェント動的閉塞リスク尺度を開発した。
AVにおける戦略的プランナーの安全性を評価するための,ホワイトボックス,シナリオベース,アクセラレーション型安全検証フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-20T19:38:14Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。