論文の概要: SPECI: Skill Prompts based Hierarchical Continual Imitation Learning for Robot Manipulation
- arxiv url: http://arxiv.org/abs/2504.15561v1
- Date: Tue, 22 Apr 2025 03:30:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 22:35:57.077554
- Title: SPECI: Skill Prompts based Hierarchical Continual Imitation Learning for Robot Manipulation
- Title(参考訳): SPECI:ロボット操作のための階層的連続的模倣学習に基づくスキルプロンプト
- Authors: Jingkai Xu, Xiangli Nie,
- Abstract要約: 動的非構造環境における現実世界のロボット操作は、進化するオブジェクト、シーン、タスクに対して生涯の適応性を必要とする。
伝統的な模倣学習は、生涯適応に不適な静的な訓練パラダイムに依存している。
我々は,ロボット操作のための新しいエンドツーエンドの階層型CILポリシーアーキテクチャである,スキル・プロンプトに基づく階層型連続模倣学習(SPECI)を提案する。
- 参考スコア(独自算出の注目度): 3.1997825444285457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world robot manipulation in dynamic unstructured environments requires lifelong adaptability to evolving objects, scenes and tasks. Traditional imitation learning relies on static training paradigms, which are ill-suited for lifelong adaptation. Although Continual Imitation Learnin (CIL) enables incremental task adaptation while preserving learned knowledge, current CIL methods primarily overlook the intrinsic skill characteristics of robot manipulation or depend on manually defined and rigid skills, leading to suboptimal cross-task knowledge transfer. To address these issues, we propose Skill Prompts-based HiErarchical Continual Imitation Learning (SPECI), a novel end-to-end hierarchical CIL policy architecture for robot manipulation. The SPECI framework consists of a multimodal perception and fusion module for heterogeneous sensory information encoding, a high-level skill inference module for dynamic skill extraction and selection, and a low-level action execution module for precise action generation. To enable efficient knowledge transfer on both skill and task levels, SPECI performs continual implicit skill acquisition and reuse via an expandable skill codebook and an attention-driven skill selection mechanism. Furthermore, we introduce mode approximation to augment the last two modules with task-specific and task-sharing parameters, thereby enhancing task-level knowledge transfer. Extensive experiments on diverse manipulation task suites demonstrate that SPECI consistently outperforms state-of-the-art CIL methods across all evaluated metrics, revealing exceptional bidirectional knowledge transfer and superior overall performance.
- Abstract(参考訳): 動的非構造環境における現実世界のロボット操作は、進化するオブジェクト、シーン、タスクに対して生涯の適応性を必要とする。
伝統的な模倣学習は、生涯適応に不適な静的な訓練パラダイムに依存している。
CIL(Continuous Imitation Learnin)は、学習知識を保存しながら段階的なタスク適応を可能にするが、現在のCIL手法は、ロボット操作の本質的なスキル特性を主に見落としているか、あるいは手動で定義された厳密なスキルに依存しているため、最適なクロスタスク知識の伝達につながる。
これらの課題に対処するために、ロボット操作のための新しいエンドツーエンドの階層型CILポリシーアーキテクチャであるSPECI(HiErarchical Continual Imitation Learning)を提案する。
SPECIフレームワークは、異種感覚情報符号化のためのマルチモーダル認識・融合モジュールと、動的スキル抽出・選択のためのハイレベルスキル推論モジュールと、正確なアクション生成のための低レベルアクション実行モジュールとから構成される。
スキルレベルとタスクレベルの両方において効率的な知識伝達を可能にするため、SPECIは拡張可能なスキルコードブックと注目駆動のスキル選択機構を介して、継続的な暗黙のスキル獲得と再利用を行う。
さらに,最後の2つのモジュールにタスク固有パラメータとタスク共有パラメータを付加するモード近似を導入し,タスクレベルの知識伝達を改善する。
多様な操作タスクスイートに関する大規模な実験により、SPECIはすべての評価指標で最先端のCILメソッドより一貫して優れており、例外的な双方向の知識伝達と全体的なパフォーマンスが優れていることが示された。
関連論文リスト
- Learn it or Leave it: Module Composition and Pruning for Continual Learning [48.07144492109635]
MoCL-Pは知識統合と計算オーバーヘッドのバランスをとる軽量な連続学習手法である。
評価の結果,MoCL-Pは最先端性能を実現し,パラメータ効率を最大3倍向上することがわかった。
論文 参考訳(メタデータ) (2024-06-26T19:18:28Z) - SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution [75.2573501625811]
拡散モデルは、ロボット軌道計画の強力な可能性を示している。
高レベルの命令からコヒーレントな軌道を生成することは依然として困難である。
エンド・ツー・エンドの階層的計画フレームワークであるSkillDiffuserを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:16:52Z) - Customizable Combination of Parameter-Efficient Modules for Multi-Task
Learning [11.260650180067278]
タスク共通スキルとタスク特化スキルを組み合わせた,新しいアプローチを提案する。
スキル割り当て行列を共同で学習する。
以上の結果から, C-Polyは, 完全共有, タスク特化, スキル非差別性ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-12-06T02:47:56Z) - LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning [64.55001982176226]
LIBEROは、ロボット操作のための生涯学習の新しいベンチマークである。
宣言的知識、手続き的知識、あるいは両者の混在を効率的に伝達する方法に焦点を当てる。
我々は、無限に多くのタスクを生成できる拡張可能な手続き生成パイプラインを開発した。
論文 参考訳(メタデータ) (2023-06-05T23:32:26Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
我々は、教師なしのトレーニングタスクの生成を通じて、堅牢なスキルを学ぶアプローチであるActive Task Randomization (ATR)を導入する。
ATRは、タスクの多様性と実現可能性のバランスをとることで、堅牢なスキルを学ぶために、初期環境状態と操作目標からなる適切なタスクを選択する。
本研究では,視覚的入力に基づく逐次操作問題の解決のために,タスクプランナが学習スキルを構成することを実証する。
論文 参考訳(メタデータ) (2022-11-11T11:24:55Z) - Unsupervised Reinforcement Learning for Transferable Manipulation Skill
Discovery [22.32327908453603]
ロボット工学における現在の強化学習(RL)は、しばしば新しい下流タスクへの一般化の難しさを経験する。
本稿では,タスク固有の報酬にアクセスできることなく,タスクに依存しない方法でエージェントを事前訓練するフレームワークを提案する。
提案手法は,最も多様なインタラクション動作を実現し,下流タスクのサンプル効率を大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-04-29T06:57:46Z) - Skill-based Multi-objective Reinforcement Learning of Industrial Robot
Tasks with Planning and Knowledge Integration [0.4949816699298335]
本稿では,タスクレベルの計画と,スキルベースシステムにおけるシナリオ固有のパラメータの学習を併用する手法を提案する。
2つの異なる接触豊富なタスクのスキルパラメータを学習することで、アプローチの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2022-03-18T16:03:27Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
モジュラー設計は、ニューラルネットワークが様々な知識の面をアンタングルして再結合し、新しいタスクにより系統的に一般化することを奨励する。
この研究では、各タスクは(潜在的に小さな)インベントリから潜在的な離散スキルのサブセットと関連付けられていると仮定する。
ネットワークのモジュラー設計により、強化学習におけるサンプル効率が著しく向上し、教師あり学習における数ショットの一般化が図られる。
論文 参考訳(メタデータ) (2022-02-28T16:07:19Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
階層的混合潜時変動モデルを用いて,データから抽象運動スキルを学習する手法を提案する。
提案手法は,オフラインデータを異なる実行動作に効果的にクラスタ化することができることを示す。
論文 参考訳(メタデータ) (2021-12-09T17:37:14Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
本稿では,多種多様なタスクの自動生成による一般化可能なスキルの発見手法を提案する。
教師なしスキル発見の先行研究とは対照的に,本手法では各スキルをトレーニング可能なタスクジェネレータが生成するユニークなタスクとペアリングする。
生成したタスクにおけるロボットの動作に定義されたタスク判別器を共同で訓練し、多様性目標の低いエビデンスを推定する。
学習スキルは階層的な強化学習アルゴリズムで構成され、目に見えない目標タスクを解決する。
論文 参考訳(メタデータ) (2021-06-26T03:41:51Z) - MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale [103.7609761511652]
大規模集団ロボット学習システムが,行動のレパートリーを同時に獲得できることを示す。
新しいタスクは、以前学んだタスクから継続的にインスタンス化できる。
我々は,7台のロボットから収集したデータを用いて,実世界のタスク12組でシステムを訓練し,評価する。
論文 参考訳(メタデータ) (2021-04-16T16:38:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。