論文の概要: AffordanceSAM: Segment Anything Once More in Affordance Grounding
- arxiv url: http://arxiv.org/abs/2504.15650v1
- Date: Tue, 22 Apr 2025 07:16:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 21:53:57.203007
- Title: AffordanceSAM: Segment Anything Once More in Affordance Grounding
- Title(参考訳): AffordanceSAM: Affordance Groundingのセグメンテーション
- Authors: Dengyang Jiang, Mengmeng Wang, Teli Ma, Hengzhuang Li, Yong liu, Guang Dai, Lei Zhang,
- Abstract要約: AffordanceSAM は,SAM の一般化能力を,アベイランス接地領域に拡張する効果的なアプローチである。
そこで本研究では,SAMのセグメンテーションにおける頑健な性能を手頃な価格に完全に移行するために,アプライアンス適応モジュールを提案する。
SAMは,まず手頃な物やアクションを粗く認識し,手頃なヒートマップを作成できるように,粗大なトレーニングレシピを同時に作成する。
- 参考スコア(独自算出の注目度): 20.75262693517494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the generalization ability of an affordance grounding model to recognize regions for unseen objects and affordance functions is crucial for real-world application. However, current models are still far away from such standards. To address this problem, we introduce AffordanceSAM, an effective approach that extends SAM's generalization capacity to the domain of affordance grounding. For the purpose of thoroughly transferring SAM's robust performance in segmentation to affordance, we initially propose an affordance-adaption module in order to help modify SAM's segmentation output to be adapted to the specific functional regions required for affordance grounding. We concurrently make a coarse-to-fine training recipe to make SAM first be aware of affordance objects and actions coarsely, and then be able to generate affordance heatmaps finely. Both quantitative and qualitative experiments show the strong generalization capacity of our AffordanceSAM, which not only surpasses previous methods under AGD20K benchmark but also shows evidence to handle the task with novel objects and affordance functions.
- Abstract(参考訳): 空き地モデルの一般化能力の向上は, 現実の応用において不可欠である。
しかし、現在のモデルはそのような標準からは程遠い。
この問題に対処するために、私たちはSAMの一般化能力を空き地における領域に拡張する効果的なアプローチであるAffordanceSAMを紹介します。
本研究の目的は,SAMのセグメンテーションにおける頑健な性能をアベイランスに完全に移行するため,まず,セグメンテーションに必要とされる特定の機能領域に適応するようにSAMのセグメンテーション出力を変更するために,アベイランス適応モジュールを提案することである。
SAMは,まず手頃な物やアクションを粗く認識し,手頃なヒートマップを作成できるように,粗大なトレーニングレシピを同時に作成する。
定量的および定性的な実験は、AffordanceSAMの強力な一般化能力を示し、これはAGD20Kベンチマークの以前の手法に勝るだけでなく、新しい対象や余剰関数でタスクを処理する証拠も示している。
関連論文リスト
- S^4M: Boosting Semi-Supervised Instance Segmentation with SAM [25.94737539065708]
半教師付きインスタンスセグメンテーションは、ラベル付きデータに制限があるため、課題を引き起こす。
現在の教師中心のフレームワークは、信頼性の低い擬似ラベルの品質のため、パフォーマンス上の制約に悩まされている。
論文 参考訳(メタデータ) (2025-04-07T17:59:10Z) - Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond [52.486290612938895]
本稿では,Segment Anything Model (SAM) のセグメンテーションモデルからのセグメンテーション知識を利用して,融合結果の質を向上し,下流タスク適応性を実現する手法を提案する。
具体的には、SAMから高レベルなセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・アテンション(SPA)モジュールを抽出し、永続リポジトリを介してソース情報を効率的に保持する。
本手法は,実運用効率を維持しつつ,高品質な視覚結果と下流タスク適応性のバランスを実現する。
論文 参考訳(メタデータ) (2025-03-03T06:16:31Z) - Continual Learning for Segment Anything Model Adaptation [14.00191851894315]
本研究では,8つのタスク領域を持つ新しい連続SAM適応(CoSAM)ベンチマークを提案する。
そこで,本研究では,SAMエンコーダがタスク領域ごとによく区切られた特徴を抽出するのを支援するために,新しい単純なyet- Effective Mixture of Domain Adapters (MoDA)アルゴリズムを提案する。
我々のMoDAは自然画像領域において高い競争力を維持しており、オリジナルのSAMのゼロショット性能に近づいた。
論文 参考訳(メタデータ) (2024-12-09T11:51:28Z) - On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
Segment Anything Model (SAM) は画像分割タスクの基本モデルであり、多様なアプリケーションにまたがる強力な一般化で知られている。
これを解決するために、精度を保ちながら効率を高めるために様々なSAM変種が提案されている。
この調査は、これらの効率的なSAM変種に関する最初の包括的なレビューを提供する。
論文 参考訳(メタデータ) (2024-10-07T11:59:54Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - SAM-SP: Self-Prompting Makes SAM Great Again [11.109389094334894]
Segment Anything Model (SAM)は、ゼロショットセグメンテーションタスクにおいて印象的な機能を示した。
SAMは、医療画像などの特定の領域に適用した場合、顕著な劣化性能に遭遇する。
本稿では,バニラSAMモデルの拡張に適したSAM-SPという,自己プロンプトに基づくファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-22T13:03:05Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM)は、オープンワールドシナリオにおいて、プロンプトのガイダンスによって、その印象的な一般化機能を実証した。
オープンコンテキストにSAMをアライメントするための自動プロンプトのための新しいフレームワークAlignSAMを提案する。
論文 参考訳(メタデータ) (2024-06-01T16:21:39Z) - ASAM: Boosting Segment Anything Model with Adversarial Tuning [9.566046692165884]
本稿では, 対角的チューニングにより基礎モデルの性能を増幅する新しい手法であるASAMを紹介する。
我々は,自然言語処理における実装の成功に触発された,自然対逆例の可能性を生かした。
本手法は, 対向例のフォトリアリズムを維持し, 元のマスクアノテーションとの整合性を確保する。
論文 参考訳(メタデータ) (2024-05-01T00:13:05Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.24734826209367]
Segment Anything Model (SAM)は、新しいパラダイムビジョン基盤モデルとして登場した。
SAMは様々な領域で応用や適応を発見できるが、その主な制限はオブジェクトの意味を把握できないことである。
我々は,SAMとオープン語彙オブジェクト検出器をエンドツーエンドフレームワークでシームレスに統合するSamborを提案する。
論文 参考訳(メタデータ) (2023-12-06T17:19:00Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。