Structure-Preserving Zero-Shot Image Editing via Stage-Wise Latent Injection in Diffusion Models
- URL: http://arxiv.org/abs/2504.15723v1
- Date: Tue, 22 Apr 2025 09:18:16 GMT
- Title: Structure-Preserving Zero-Shot Image Editing via Stage-Wise Latent Injection in Diffusion Models
- Authors: Dasol Jeong, Donggoo Kang, Jiwon Park, Hyebean Lee, Joonki Paik,
- Abstract summary: We propose a diffusion-based framework for zero-shot image editing that unifies text-guided and reference-guided approaches without requiring fine-tuning.<n>Our method leverages diffusion inversion and timestep-specific null-text embeddings to preserve the structural integrity of the source image.<n>Cross-attention with reference latents facilitates semantic alignment between the source and reference.
- Score: 3.3845637570565814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a diffusion-based framework for zero-shot image editing that unifies text-guided and reference-guided approaches without requiring fine-tuning. Our method leverages diffusion inversion and timestep-specific null-text embeddings to preserve the structural integrity of the source image. By introducing a stage-wise latent injection strategy-shape injection in early steps and attribute injection in later steps-we enable precise, fine-grained modifications while maintaining global consistency. Cross-attention with reference latents facilitates semantic alignment between the source and reference. Extensive experiments across expression transfer, texture transformation, and style infusion demonstrate state-of-the-art performance, confirming the method's scalability and adaptability to diverse image editing scenarios.
Related papers
- Contrastive Learning Guided Latent Diffusion Model for Image-to-Image Translation [7.218556478126324]
diffusion model has demonstrated superior performance in diverse and high-quality images for text-guided image translation.<n>We propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss.<n>Our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2025-03-26T12:15:25Z) - Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
Diffusion models have revolutionized the field of content synthesis and editing.
Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT)
We propose an automatic method to identify "vital layers" within DiT, crucial for image formation.
Next, to enable real-image editing, we introduce an improved image inversion method for flow models.
arXiv Detail & Related papers (2024-11-21T18:59:51Z) - TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization [59.412236435627094]
TALE is a training-free framework harnessing the generative capabilities of text-to-image diffusion models.
We equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization.
Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition.
arXiv Detail & Related papers (2024-08-07T08:52:21Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - BARET : Balanced Attention based Real image Editing driven by
Target-text Inversion [36.59406959595952]
We propose a novel editing technique that only requires an input image and target text for various editing types including non-rigid edits without fine-tuning diffusion model.
Our method contains three novelties: (I) Targettext Inversion Schedule (TTIS) is designed to fine-tune the input target text embedding to achieve fast image reconstruction without image caption and acceleration of convergence; (II) Progressive Transition Scheme applies progressive linear approaches between target text embedding and its fine-tuned version to generate transition embedding for maintaining non-rigid editing capability; (III) Balanced Attention Module (BAM) balances the tradeoff between textual description and image semantics
arXiv Detail & Related papers (2023-12-09T07:18:23Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
We present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance.
Our model's adaptability allows it to be implemented with both image-fusion and latent-dif models.
Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
arXiv Detail & Related papers (2023-06-07T12:56:56Z) - RealignDiff: Boosting Text-to-Image Diffusion Model with Coarse-to-fine Semantic Re-alignment [112.45442468794658]
We propose a two-stage coarse-to-fine semantic re-alignment method, named RealignDiff.
In the coarse semantic re-alignment phase, a novel caption reward is proposed to evaluate the semantic discrepancy between the generated image caption and the given text prompt.
The fine semantic re-alignment stage employs a local dense caption generation module and a re-weighting attention modulation module to refine the previously generated images from a local semantic view.
arXiv Detail & Related papers (2023-05-31T06:59:21Z) - Conditional Score Guidance for Text-Driven Image-to-Image Translation [52.73564644268749]
We present a novel algorithm for text-driven image-to-image translation based on a pretrained text-to-image diffusion model.
Our method aims to generate a target image by selectively editing the regions of interest in a source image.
arXiv Detail & Related papers (2023-05-29T10:48:34Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer.
It is often difficult to maintain the original content of the image during the reverse diffusion.
We present a novel diffusion-based unsupervised image translation method using disentangled style and content representation.
Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
arXiv Detail & Related papers (2022-09-30T06:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.