Markov Kernels, Distances and Optimal Control: A Parable of Linear Quadratic Non-Gaussian Distribution Steering
- URL: http://arxiv.org/abs/2504.15753v1
- Date: Tue, 22 Apr 2025 10:07:43 GMT
- Title: Markov Kernels, Distances and Optimal Control: A Parable of Linear Quadratic Non-Gaussian Distribution Steering
- Authors: Alexis M. H. Teter, Wenqing Wang, Sachin Shivakumar, Abhishek Halder,
- Abstract summary: kernel for the Ito Markov diffusion $mathrmdboldsymbolx_t=boldsymbolA_tboldsymbolx_t=boldsymbolA_tboldsymbolx_t=boldsymbolA_tboldsymbolx_t=boldsymbolA_tboldsymbolx_t=boldsymbolA_tboldsymbolx_t=boldsymbolA
- Score: 3.497013356387396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a controllable linear time-varying (LTV) pair $(\boldsymbol{A}_t,\boldsymbol{B}_t)$ and $\boldsymbol{Q}_{t}$ positive semidefinite, we derive the Markov kernel for the It\^{o} diffusion ${\mathrm{d}}\boldsymbol{x}_{t}=\boldsymbol{A}_{t}\boldsymbol{x}_t {\mathrm{d}} t + \sqrt{2}\boldsymbol{B}_{t}{\mathrm{d}}\boldsymbol{w}_{t}$ with an accompanying killing of probability mass at rate $\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{Q}_{t}\boldsymbol{x}$. This Markov kernel is the Green's function for an associated linear reaction-advection-diffusion partial differential equation. Our result generalizes the recently derived kernel for the special case $\left(\boldsymbol{A}_t,\boldsymbol{B}_t\right)=\left(\boldsymbol{0},\boldsymbol{I}\right)$, and depends on the solution of an associated Riccati matrix ODE. A consequence of this result is that the linear quadratic non-Gaussian Schr\"{o}dinger bridge is exactly solvable. This means that the problem of steering a controlled LTV diffusion from a given non-Gaussian distribution to another over a fixed deadline while minimizing an expected quadratic cost can be solved using dynamic Sinkhorn recursions performed with the derived kernel. Our derivation for the $\left(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{Q}_t\right)$-parametrized kernel pursues a new idea that relies on finding a state-time dependent distance-like functional given by the solution of a deterministic optimal control problem. This technique breaks away from existing methods, such as generalizing Hermite polynomials or Weyl calculus, which have seen limited success in the reaction-diffusion context. Our technique uncovers a new connection between Markov kernels, distances, and optimal control. This connection is of interest beyond its immediate application in solving the linear quadratic Schr\"{o}dinger bridge problem.
Related papers
- On the Hopf-Cole Transform for Control-affine Schrödinger Bridge [0.4972323953932129]
We show that the Hopf-Cole transform applied to the conditions of optimality for generic control-affine Schr"odinger bridge problems.<n>We explain how the resulting PDEs can be interpreted as nonlinear forward-backward advection-diffusion-reaction equations.
arXiv Detail & Related papers (2025-03-22T04:08:10Z) - Resilience of Rademacher chaos of low degree [5.3390449198644445]
resilience of Rademacher chaos is the maximum number of adversarial sign-flips that the chaos can sustain.<n>We provide probabilistic lower-bound guarantees for the resilience of Rademacher chaos of arbitrary yet sufficiently low degree.<n>Our results for decoupled Rademacher chaos of order two and that of higher order whilst are established through the same conceptual framework, differ substantially.
arXiv Detail & Related papers (2024-02-16T08:27:55Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Convergence of a Normal Map-based Prox-SGD Method under the KL
Inequality [0.0]
We present a novel map-based algorithm ($mathsfnorMtext-mathsfSGD$) for $symbol$k$ convergence problems.
arXiv Detail & Related papers (2023-05-10T01:12:11Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - On the Self-Penalization Phenomenon in Feature Selection [69.16452769334367]
We describe an implicit sparsity-inducing mechanism based on over a family of kernels.
As an application, we use this sparsity-inducing mechanism to build algorithms consistent for feature selection.
arXiv Detail & Related papers (2021-10-12T09:36:41Z) - Extensions to the Proximal Distance Method of Constrained Optimization [7.813460653362097]
We study the problem of minimizing a loss $f(boldsymbolx)$ subject to constraints of the form $boldsymbolDboldsymbolx in S$.
Fusion constraints can capture smoothness, sparsity, or more general constraint patterns.
arXiv Detail & Related papers (2020-09-02T03:32:41Z) - Nonparametric Learning of Two-Layer ReLU Residual Units [22.870658194212744]
We describe an algorithm that learns two-layer residual units with rectified linear unit (ReLU) activation.
We design layer-wise objectives as functionals whose analytic minimizers express the exact ground-truth network in terms of its parameters and nonlinearities.
We prove the statistical strong consistency of our algorithm, and demonstrate the robustness and sample efficiency of our algorithm by experiments.
arXiv Detail & Related papers (2020-08-17T22:11:26Z) - Optimal Combination of Linear and Spectral Estimators for Generalized
Linear Models [59.015960528781115]
We show how to optimally combine $hatboldsymbol xrm L$ and $hatboldsymbol xrm s$.
In order to establish the limiting distribution of $(boldsymbol x, hatboldsymbol xrm L, hatboldsymbol xrm s)$, we design and analyze an Approximate Message Passing (AMP) algorithm.
arXiv Detail & Related papers (2020-08-07T18:20:05Z) - GO Hessian for Expectation-Based Objectives [73.06986780804269]
GO gradient was proposed recently for expectation-based objectives $mathbbE_q_boldsymbolboldsymbolgamma(boldsymboly) [f(boldsymboly)]$.
Based on the GO gradient, we present for $mathbbE_q_boldsymbolboldsymbolgamma(boldsymboly) [f(boldsymboly)]$ an unbiased low-variance Hessian estimator, named GO Hessian.
arXiv Detail & Related papers (2020-06-16T02:20:41Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.