Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions
- URL: http://arxiv.org/abs/2504.15846v1
- Date: Tue, 22 Apr 2025 12:42:38 GMT
- Title: Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions
- Authors: Jonah Ekelund, Savvas Raptis, Vicki Toy-Edens, Wenli Mo, Drew L. Turner, Ian J. Cohen, Stefano Markidis,
- Abstract summary: This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction.<n>We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
Related papers
- Kriformer: A Novel Spatiotemporal Kriging Approach Based on Graph Transformers [5.4381914710364665]
This study addresses posed by sparse sensor deployment and unreliable data by framing the problem as an environmental challenge.
A graphkriformer model, Kriformer, estimates data at locations without sensors by mining spatial and temporal correlations, even with limited resources.
arXiv Detail & Related papers (2024-09-23T11:01:18Z) - Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - The CAST package for training and assessment of spatial prediction models in R [0.0]
We introduce the CAST package and its core functionalities.
We will go through the different steps of the modelling workflow and show how CAST can be used to support more reliable spatial predictions.
arXiv Detail & Related papers (2024-04-10T12:48:10Z) - Physics-Guided Abnormal Trajectory Gap Detection [2.813613899641924]
We propose a Space Time-Aware Gap Detection (STAGD) approach to leverage space-time indexing and merging trajectory gaps.
We also incorporate a Dynamic Region-based Merge (DRM) approach to efficiently compute gap abnormality scores.
arXiv Detail & Related papers (2024-03-10T17:07:28Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Spatial-Temporal Feature Extraction and Evaluation Network for Citywide
Traffic Condition Prediction [1.321203201549798]
A Double Layer - Spatial Temporal Feature Extraction and Evaluation (DL-STFEE) model is proposed.
Three sets of experiments are performed on actual traffic datasets to show that DL-STFEE can effectively capture the spatial-temporal features.
arXiv Detail & Related papers (2022-07-22T12:15:41Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S-temporal action localization is an important problem in computer vision.
We propose an end-to-end unsupervised domain adaptation algorithm.
We show that significant performance gain can be achieved when spatial and temporal features are adapted separately or jointly.
arXiv Detail & Related papers (2020-10-19T04:25:10Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.