Physics-Guided Abnormal Trajectory Gap Detection
- URL: http://arxiv.org/abs/2403.06268v1
- Date: Sun, 10 Mar 2024 17:07:28 GMT
- Title: Physics-Guided Abnormal Trajectory Gap Detection
- Authors: Arun Sharma, Shashi Shekhar
- Abstract summary: We propose a Space Time-Aware Gap Detection (STAGD) approach to leverage space-time indexing and merging trajectory gaps.
We also incorporate a Dynamic Region-based Merge (DRM) approach to efficiently compute gap abnormality scores.
- Score: 2.813613899641924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given trajectories with gaps (i.e., missing data), we investigate algorithms
to identify abnormal gaps in trajectories which occur when a given moving
object did not report its location, but other moving objects in the same
geographic region periodically did. The problem is important due to its
societal applications, such as improving maritime safety and regulatory
enforcement for global security concerns such as illegal fishing, illegal oil
transfers, and trans-shipments. The problem is challenging due to the
difficulty of bounding the possible locations of the moving object during a
trajectory gap, and the very high computational cost of detecting gaps in such
a large volume of location data. The current literature on anomalous trajectory
detection assumes linear interpolation within gaps, which may not be able to
detect abnormal gaps since objects within a given region may have traveled away
from their shortest path. In preliminary work, we introduced an abnormal gap
measure that uses a classical space-time prism model to bound an object's
possible movement during the trajectory gap and provided a scalable memoized
gap detection algorithm (Memo-AGD). In this paper, we propose a Space
Time-Aware Gap Detection (STAGD) approach to leverage space-time indexing and
merging of trajectory gaps. We also incorporate a Dynamic Region Merge-based
(DRM) approach to efficiently compute gap abnormality scores. We provide
theoretical proofs that both algorithms are correct and complete and also
provide analysis of asymptotic time complexity. Experimental results on
synthetic and real-world maritime trajectory data show that the proposed
approach substantially improves computation time over the baseline technique.
Related papers
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
We propose a novel spatial event ranking approach named SpatialRank.
We show that SpatialRank can effectively identify the top riskiest locations of crimes and traffic accidents.
arXiv Detail & Related papers (2023-09-30T06:20:21Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - A Latent Space Correlation-Aware Autoencoder for Anomaly Detection in
Skewed Data [0.0]
We propose a kernelized autoencoder that measures latent dimension correlation to effectively detect both near and far anomalies.
The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance.
arXiv Detail & Related papers (2023-01-01T19:40:06Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Generative Anomaly Detection for Time Series Datasets [1.7954335118363964]
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems.
We propose a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies.
Our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score.
arXiv Detail & Related papers (2022-06-28T17:08:47Z) - Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction [17.94199362114272]
In intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation.
We propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence.
We conduct extensive experiments on large-scale real-world tasks and verify the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-05-21T17:43:07Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network.
To fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection.
We formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval.
arXiv Detail & Related papers (2020-12-25T22:36:22Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Anomaly Detection in Trajectory Data with Normalizing Flows [0.0]
We propose an approach based on normalizing flows that enables complex density estimation from data with neural networks.
Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory.
We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques.
arXiv Detail & Related papers (2020-04-13T14:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.