論文の概要: Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations
- arxiv url: http://arxiv.org/abs/2504.15903v2
- Date: Wed, 23 Apr 2025 13:23:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.792347
- Title: Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations
- Title(参考訳): モデル温度を考慮した抽象・推論コーパス(ARC)作業におけるLLMモデルの性能に及ぼす騒音の影響
- Authors: Nikhil Khandalkar, Pavan Yadav, Krishna Shinde, Lokesh B. Ramegowda, Rajarshi Das,
- Abstract要約: 大規模言語モデル(LLM)は、構造化推論機能への関心が高まっている。
Abstraction and Reasoning Corpusベンチマークは、AIモデルが新しい問題にどのように一般化するかをテストすることによって、これらの能力を評価する上で重要な役割を果たす。
この研究は、現実世界のシナリオに固有のあいまいさと可変性を扱うことができる、より堅牢で適応可能なAIシステムを開発する必要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 4.39614901077936
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have generated growing interest in their structured reasoning capabilities, particularly in tasks involving abstraction and pattern recognition. The Abstraction and Reasoning Corpus (ARC) benchmark plays a crucial role in evaluating these capabilities by testing how well AI models generalize to novel problems. While GPT-4o demonstrates strong performance by solving all ARC tasks under zero-noise conditions, other models like DeepSeek R1 and LLaMA 3.2 fail to solve any, suggesting limitations in their ability to reason beyond simple pattern matching. To explore this gap, we systematically evaluate these models across different noise levels and temperature settings. Our results reveal that the introduction of noise consistently impairs model performance, regardless of architecture. This decline highlights a shared vulnerability: current LLMs, despite showing signs of abstract reasoning, remain highly sensitive to input perturbations. Such fragility raises concerns about their real-world applicability, where noise and uncertainty are common. By comparing how different model architectures respond to these challenges, we offer insights into the structural weaknesses of modern LLMs in reasoning tasks. This work underscores the need for developing more robust and adaptable AI systems capable of handling the ambiguity and variability inherent in real-world scenarios. Our findings aim to guide future research toward enhancing model generalization, robustness, and alignment with human-like cognitive flexibility.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、特に抽象化やパターン認識を含むタスクにおいて、構造化推論能力への関心が高まっている。
ARC(Abstraction and Reasoning Corpus)ベンチマークは、AIモデルが新しい問題にどのように一般化するかをテストすることによって、これらの能力を評価する上で重要な役割を果たす。
GPT-4oはゼロノイズ条件下ですべてのARCタスクを解くことで強力な性能を示すが、DeepSeek R1やLLaMA 3.2のような他のモデルでは解決できず、単純なパターンマッチング以上の推論能力の限界を示唆している。
このギャップを探索するために、異なる騒音レベルと温度設定でこれらのモデルを体系的に評価する。
以上の結果から,ノイズの導入はアーキテクチャによらずモデル性能を損なうことが明らかとなった。
現在のLSMは抽象的推論の兆候を示すが、入力の摂動に対して非常に敏感である。
このような脆弱さは、ノイズや不確実性が一般的である現実の応用性に対する懸念を引き起こす。
異なるモデルアーキテクチャがこれらの課題にどのように対処するかを比較することで、現代のLCMの構造的弱点に関する洞察を提供する。
この研究は、現実世界のシナリオに固有のあいまいさと可変性を扱うことができる、より堅牢で適応可能なAIシステムを開発する必要性を浮き彫りにしている。
本研究の目的は, モデル一般化, 堅牢性, 人間の認知的柔軟性との整合性向上に向けた今後の研究を導くことである。
関連論文リスト
- Towards Robust LLMs: an Adversarial Robustness Measurement Framework [0.0]
大規模言語モデル(LLM)は敵の摂動に弱いままであり、高い精度のアプリケーションでは信頼性を損なう。
我々はロバストネス測定および評価フレームワークを適用し、モデルパラメータへのアクセスを必要とせず、逆入力に対するLLMレジリエンスの定量化を行う。
我々の研究は、LLMの堅牢性を評価するための体系的な方法論を提供し、実世界展開のためのより信頼性の高い言語モデルの開発を進めています。
論文 参考訳(メタデータ) (2025-04-24T16:36:19Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
事前訓練された微調整パラダイムに基づく大規模言語モデル(LLM)は、自然言語処理タスクの解決において重要な役割を担っている。
本稿では,自己回帰 LLM に着目し,HMM (Hidden Markov Models) を用いたモデリングを提案する。
論文 参考訳(メタデータ) (2024-10-01T13:53:44Z) - Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models [4.4849006637642805]
抽出された情報におけるノイズや誤差の存在は、LLMの堅牢性に課題をもたらす。
ノイズの多い外部情報によるモデル精度低下の問題に対処するため,データ拡張に基づく微調整手法を提案する。
我々は既存のLCMと我々のアプローチの両方で実験を行い、その結果をGPT-4で評価した。
論文 参考訳(メタデータ) (2024-09-09T07:32:30Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
視覚状態空間モデル(VSSM)は視覚知覚タスクにおいて顕著な性能を示した。
しかし、自然と敵対的な摂動の下での頑丈さは依然として重要な懸念事項である。
様々な摂動シナリオ下でのVSSMの頑健さを総合的に評価する。
論文 参考訳(メタデータ) (2024-06-13T17:59:44Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) は、各タスクのダイナミクスと報酬関数の因果関係を学習し、最小限のタスク固有の抽象化を導出する手法である。
CBMの学習された暗黙的ダイナミクスモデルは、明確なものよりも根底にある因果関係と状態抽象化を正確に識別する。
論文 参考訳(メタデータ) (2024-01-23T05:43:15Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。