Few-shot Hate Speech Detection Based on the MindSpore Framework
- URL: http://arxiv.org/abs/2504.15987v1
- Date: Tue, 22 Apr 2025 15:42:33 GMT
- Title: Few-shot Hate Speech Detection Based on the MindSpore Framework
- Authors: Zhenkai Qin, Dongze Wu, Yuxin Liu, Guifang Yang,
- Abstract summary: We propose MS-Hate, a prompt-enhanced neural framework for few-shot hate speech detection implemented on the MindSpore deep learning platform.<n> Experimental results on two benchmark datasets-HateXplain and HSOL-demonstrate that our approach outperforms competitive baselines in precision, recall, and F1-score.<n>These findings highlight the potential of combining prompt-based learning with adversarial augmentation for robust and adaptable hate speech detection in few-shot scenarios.
- Score: 2.6396343924017915
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The proliferation of hate speech on social media poses a significant threat to online communities, requiring effective detection systems. While deep learning models have shown promise, their performance often deteriorates in few-shot or low-resource settings due to reliance on large annotated corpora. To address this, we propose MS-FSLHate, a prompt-enhanced neural framework for few-shot hate speech detection implemented on the MindSpore deep learning platform. The model integrates learnable prompt embeddings, a CNN-BiLSTM backbone with attention pooling, and synonym-based adversarial data augmentation to improve generalization. Experimental results on two benchmark datasets-HateXplain and HSOL-demonstrate that our approach outperforms competitive baselines in precision, recall, and F1-score. Additionally, the framework shows high efficiency and scalability, suggesting its suitability for deployment in resource-constrained environments. These findings highlight the potential of combining prompt-based learning with adversarial augmentation for robust and adaptable hate speech detection in few-shot scenarios.
Related papers
- $C^2$AV-TSE: Context and Confidence-aware Audio Visual Target Speaker Extraction [80.57232374640911]
We propose a model-agnostic strategy called the Mask-And-Recover (MAR)<n>MAR integrates both inter- and intra-modality contextual correlations to enable global inference within extraction modules.<n>To better target challenging parts within each sample, we introduce a Fine-grained Confidence Score (FCS) model.
arXiv Detail & Related papers (2025-04-01T13:01:30Z) - Disentangled Training with Adversarial Examples For Robust Small-footprint Keyword Spotting [18.456711824241978]
We propose datasource-aware disentangled learning with adversarial examples to improve KWS robustness.
Experimental results demonstrate that the proposed learning strategy improves false reject rate by $40.31%$ at $1%$ false accept rate.
Our best-performing system achieves $98.06%$ accuracy on the Google Speech Commands V1 dataset.
arXiv Detail & Related papers (2024-08-23T20:03:51Z) - Real-time Speech Emotion Recognition Based on Syllable-Level Feature
Extraction [7.0019575386261375]
We present a speech emotion recognition system based on a reductionist approach of decomposing and analyzing syllable-level features.
A set of syllable-level formant features is extracted and fed into a single hidden layer neural network that makes predictions for each syllable.
Experiments show that the method archives real-time latency while predicting with state-of-the-art cross-corpus unweighted accuracy of 47.6% for IE to MI and 56.2% for MI to IE.
arXiv Detail & Related papers (2022-04-25T00:20:28Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Mitigating Closed-model Adversarial Examples with Bayesian Neural
Modeling for Enhanced End-to-End Speech Recognition [18.83748866242237]
We focus on a rigorous and empirical "closed-model adversarial robustness" setting.
We propose an advanced Bayesian neural network (BNN) based adversarial detector.
We improve detection rate by +2.77 to +5.42% (relative +3.03 to +6.26%) and reduce the word error rate by 5.02 to 7.47% on LibriSpeech datasets.
arXiv Detail & Related papers (2022-02-17T09:17:58Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
We make the first attempt to investigate the adversarial vulnerability of such paradigm under the attacks from both zero-knowledge adversaries and limited-knowledge adversaries.
The experimental results illustrate that the paradigm proposed by SUPERB is seriously vulnerable to limited-knowledge adversaries.
arXiv Detail & Related papers (2021-11-08T08:44:04Z) - FluentNet: End-to-End Detection of Speech Disfluency with Deep Learning [23.13972240042859]
We propose an end-to-end deep neural network, FluentNet, capable of detecting a number of different disfluency types.
FluentNet consists of a Squeeze-and-Excitation Residual convolutional neural network which facilitate the learning of strong spectral frame-level representations.
We present a disfluency dataset based on the public LibriSpeech dataset with synthesized stutters.
arXiv Detail & Related papers (2020-09-23T21:51:29Z) - Characterizing Speech Adversarial Examples Using Self-Attention U-Net
Enhancement [102.48582597586233]
We present a U-Net based attention model, U-Net$_At$, to enhance adversarial speech signals.
We conduct experiments on the automatic speech recognition (ASR) task with adversarial audio attacks.
arXiv Detail & Related papers (2020-03-31T02:16:34Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
Speaker recognition systems based on deep speaker embeddings have achieved significant performance in controlled conditions.
Speaker verification on short utterances in uncontrolled noisy environment conditions is one of the most challenging and highly demanded tasks.
This paper presents approaches aimed to achieve two goals: a) improve the quality of far-field speaker verification systems in the presence of environmental noise, reverberation and b) reduce the system qualitydegradation for short utterances.
arXiv Detail & Related papers (2020-02-14T13:34:33Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.