Disentangled Training with Adversarial Examples For Robust Small-footprint Keyword Spotting
- URL: http://arxiv.org/abs/2408.13355v1
- Date: Fri, 23 Aug 2024 20:03:51 GMT
- Title: Disentangled Training with Adversarial Examples For Robust Small-footprint Keyword Spotting
- Authors: Zhenyu Wang, Li Wan, Biqiao Zhang, Yiteng Huang, Shang-Wen Li, Ming Sun, Xin Lei, Zhaojun Yang,
- Abstract summary: We propose datasource-aware disentangled learning with adversarial examples to improve KWS robustness.
Experimental results demonstrate that the proposed learning strategy improves false reject rate by $40.31%$ at $1%$ false accept rate.
Our best-performing system achieves $98.06%$ accuracy on the Google Speech Commands V1 dataset.
- Score: 18.456711824241978
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A keyword spotting (KWS) engine that is continuously running on device is exposed to various speech signals that are usually unseen before. It is a challenging problem to build a small-footprint and high-performing KWS model with robustness under different acoustic environments. In this paper, we explore how to effectively apply adversarial examples to improve KWS robustness. We propose datasource-aware disentangled learning with adversarial examples to reduce the mismatch between the original and adversarial data as well as the mismatch across original training datasources. The KWS model architecture is based on depth-wise separable convolution and a simple attention module. Experimental results demonstrate that the proposed learning strategy improves false reject rate by $40.31%$ at $1%$ false accept rate on the internal dataset, compared to the strongest baseline without using adversarial examples. Our best-performing system achieves $98.06%$ accuracy on the Google Speech Commands V1 dataset.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
Adversarial training and adversarial purification are among the most widely recognized defense strategies.
We propose a new principle, namely Adversarial Logit Update (ALU), to infer adversarial sample's labels.
Our solution achieves superior performance compared to state-of-the-art methods against a wide range of adversarial attacks.
arXiv Detail & Related papers (2023-08-29T07:13:31Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input.
We first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise.
We propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models.
arXiv Detail & Related papers (2023-06-01T19:04:17Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Robust Few-shot Learning Without Using any Adversarial Samples [19.34427461937382]
A few efforts have been made to combine the few-shot problem with the robustness objective using sophisticated Meta-Learning techniques.
We propose a simple but effective alternative that does not require any adversarial samples.
Inspired by the cognitive decision-making process in humans, we enforce high-level feature matching between the base class data and their corresponding low-frequency samples.
arXiv Detail & Related papers (2022-11-03T05:58:26Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise [1.976652238476722]
We train a meta-optimizer which learns to robustly optimize a model using adversarial examples and is able to transfer the knowledge learned to new models.
Experimental results show the meta-optimizer is consistent across different architectures and data sets, suggesting it is possible to automatically patch adversarial vulnerabilities.
arXiv Detail & Related papers (2020-08-12T11:44:01Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.