Making Neural Networks More Suitable for Approximate Clifford+T Circuit Synthesis
- URL: http://arxiv.org/abs/2504.15990v1
- Date: Tue, 22 Apr 2025 15:51:32 GMT
- Title: Making Neural Networks More Suitable for Approximate Clifford+T Circuit Synthesis
- Authors: Mathias Weiden, Justin Kalloor, John Kubiatowicz, Costin Iancu,
- Abstract summary: We develop deep learning techniques that improve performance on reinforcement learning guided quantum circuit synthesis.<n>We show how augmenting data with small random unitary perturbations during training enables more robust learning.<n>We also show how encoding numerical data with techniques from image processing allow networks to better detect small but significant changes in data.
- Score: 0.7449724123186384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning with deep neural networks has transformed computational approaches to scientific and engineering problems. Central to many of these advancements are precisely tuned neural architectures that are tailored to the domains in which they are used. In this work, we develop deep learning techniques and architectural modifications that improve performance on reinforcement learning guided quantum circuit synthesis-the task of constructing a circuit that implements a given unitary matrix. First, we propose a global phase invariance operation which makes our architecture resilient to complex global phase shifts. Second, we demonstrate how augmenting data with small random unitary perturbations during training enables more robust learning. Finally, we show how encoding numerical data with techniques from image processing allow networks to better detect small but significant changes in data. Our work enables deep learning approaches to better synthesize quantum circuits that implement unitary matrices.
Related papers
- Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - Entropy-based Guidance of Deep Neural Networks for Accelerated Convergence and Improved Performance [0.8749675983608172]
We derive new mathematical results to measure the changes in entropy as fully-connected and convolutional neural networks process data.
By measuring the change in entropy as networks process data effectively, patterns critical to a well-performing network can be visualized and identified.
Experiments in image compression, image classification, and image segmentation on benchmark datasets demonstrate these losses guide neural networks to learn rich latent data representations in fewer dimensions.
arXiv Detail & Related papers (2023-08-28T23:33:07Z) - Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity [0.0]
We develop a novel deep neural network unit characterized by a sparse higher-order graphical architecture built over the homological structure of underlying data.
Results demonstrate the advantages of this novel design which can tie or overcome the results of state-of-the-art machine learning and deep learning models using only a fraction of parameters.
arXiv Detail & Related papers (2023-06-27T09:46:16Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
We demonstrate three types of neural network architectures for efficient learning of deformations of solid bodies.
The first two are based on the recently proposed CNN U-NET and MAgNET frameworks which have shown promising performance for learning on mesh-based data.
The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks.
arXiv Detail & Related papers (2022-12-01T13:10:56Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Multiresolution Convolutional Autoencoders [5.0169726108025445]
We propose a multi-resolution convolutional autoencoder architecture that integrates and leverages three successful mathematical architectures.
Basic learning techniques are applied to ensure information learned from previous training steps can be rapidly transferred to the larger network.
The performance gains are illustrated through a sequence of numerical experiments on synthetic examples and real-world spatial data.
arXiv Detail & Related papers (2020-04-10T08:31:59Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
We bridge the recent algorithmic progress in training Binary Neural Networks and Spiking Neural Networks.
We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets.
arXiv Detail & Related papers (2020-02-24T03:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.