Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity
- URL: http://arxiv.org/abs/2306.15337v1
- Date: Tue, 27 Jun 2023 09:46:16 GMT
- Title: Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity
- Authors: Yuanrong Wang, Antonio Briola, Tomaso Aste
- Abstract summary: We develop a novel deep neural network unit characterized by a sparse higher-order graphical architecture built over the homological structure of underlying data.
Results demonstrate the advantages of this novel design which can tie or overcome the results of state-of-the-art machine learning and deep learning models using only a fraction of parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress of Artificial Intelligence research came with the
development of increasingly complex deep learning models, leading to growing
challenges in terms of computational complexity, energy efficiency and
interpretability. In this study, we apply advanced network-based information
filtering techniques to design a novel deep neural network unit characterized
by a sparse higher-order graphical architecture built over the homological
structure of underlying data. We demonstrate its effectiveness in two
application domains which are traditionally challenging for deep learning:
tabular data and time series regression problems. Results demonstrate the
advantages of this novel design which can tie or overcome the results of
state-of-the-art machine learning and deep learning models using only a
fraction of parameters.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - A Survey on State-of-the-art Deep Learning Applications and Challenges [0.0]
Building a deep learning model is challenging due to the algorithm's complexity and the dynamic nature of real-world problems.
This study aims to comprehensively review the state-of-the-art deep learning models in computer vision, natural language processing, time series analysis and pervasive computing.
arXiv Detail & Related papers (2024-03-26T10:10:53Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
We demonstrate three types of neural network architectures for efficient learning of deformations of solid bodies.
The first two are based on the recently proposed CNN U-NET and MAgNET frameworks which have shown promising performance for learning on mesh-based data.
The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks.
arXiv Detail & Related papers (2022-12-01T13:10:56Z) - Dimensionality Reduction in Deep Learning via Kronecker Multi-layer
Architectures [4.836352379142503]
We propose a new deep learning architecture based on fast matrix multiplication of a Kronecker product decomposition.
We show that this architecture allows a neural network to be trained and implemented with a significant reduction in computational time and resources.
arXiv Detail & Related papers (2022-04-08T19:54:52Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.