CAPO: Cost-Aware Prompt Optimization
- URL: http://arxiv.org/abs/2504.16005v3
- Date: Fri, 25 Apr 2025 15:27:15 GMT
- Title: CAPO: Cost-Aware Prompt Optimization
- Authors: Tom Zehle, Moritz Schlager, Timo Heiß, Matthias Feurer,
- Abstract summary: Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt.<n>We introduce CAPO, an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques.<n>Our experiments demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p.
- Score: 3.0290544952776854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
Related papers
- Local Prompt Optimization [0.6906005491572401]
Local Prompt Optimization integrates with any general automatic prompt engineering method.
We observe remarkable performance improvements on Math Reasoning (GSM8k and MultiArithm) and BIG-bench Hard benchmarks.
arXiv Detail & Related papers (2025-04-29T01:45:47Z) - GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers [52.17222304851524]
We introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning.<n>By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models.<n> GReaTer consistently outperforms previous state-of-the-art prompt optimization methods.
arXiv Detail & Related papers (2024-12-12T20:59:43Z) - SCULPT: Systematic Tuning of Long Prompts [17.00433893207345]
We propose a framework that treats prompt optimization as a hierarchical tree refinement problem.
SCULPT represents prompts as tree structures, enabling targeted modifications while preserving contextual integrity.
It produces more stable and interpretable prompt modifications, ensuring better generalization across tasks.
arXiv Detail & Related papers (2024-10-28T07:10:10Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - PromptWizard: Task-Aware Prompt Optimization Framework [2.618253052454435]
Large language models (LLMs) have transformed AI across diverse domains.
Manual prompt engineering is both labor-intensive and domain-specific.
We introduce PromptWizard, a novel, fully automated framework for discrete prompt optimization.
arXiv Detail & Related papers (2024-05-28T17:08:31Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.