SparseJEPA: Sparse Representation Learning of Joint Embedding Predictive Architectures
- URL: http://arxiv.org/abs/2504.16140v1
- Date: Tue, 22 Apr 2025 02:43:00 GMT
- Title: SparseJEPA: Sparse Representation Learning of Joint Embedding Predictive Architectures
- Authors: Max Hartman, Lav Varshney,
- Abstract summary: Joint Embedding Predictive Architectures (JEPA) have emerged as a powerful framework for learning general-purpose representations.<n>We propose SparseJEPA, an extension that integrates sparse representation learning into the JEPA framework to enhance the quality of learned representations.
- Score: 0.46040036610482665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Joint Embedding Predictive Architectures (JEPA) have emerged as a powerful framework for learning general-purpose representations. However, these models often lack interpretability and suffer from inefficiencies due to dense embedding representations. We propose SparseJEPA, an extension that integrates sparse representation learning into the JEPA framework to enhance the quality of learned representations. SparseJEPA employs a penalty method that encourages latent space variables to be shared among data features with strong semantic relationships, while maintaining predictive performance. We demonstrate the effectiveness of SparseJEPA by training on the CIFAR-100 dataset and pre-training a lightweight Vision Transformer. The improved embeddings are utilized in linear-probe transfer learning for both image classification and low-level tasks, showcasing the architecture's versatility across different transfer tasks. Furthermore, we provide a theoretical proof that demonstrates that the grouping mechanism enhances representation quality. This was done by displaying that grouping reduces Multiinformation among latent-variables, including proofing the Data Processing Inequality for Multiinformation. Our results indicate that incorporating sparsity not only refines the latent space but also facilitates the learning of more meaningful and interpretable representations. In further work, hope to further extend this method by finding new ways to leverage the grouping mechanism through object-centric representation learning.
Related papers
- T-JEPA: Augmentation-Free Self-Supervised Learning for Tabular Data [0.0]
Self-supervised learning (SSL) generally involves generating different views of the same sample and thus requires data augmentations.<n>In the present work, we propose a novel augmentation-free SSL method for structured data.<n>Our approach, T-JEPA, relies on a Joint Embedding Predictive Architecture (JEPA) and is akin to mask reconstruction in the latent space.
arXiv Detail & Related papers (2024-10-07T13:15:07Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.<n>We propose a novel plug-and-play alignment framework for LLMs and collaborative models.<n>Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Enhancing Representation Learning on High-Dimensional, Small-Size
Tabular Data: A Divide and Conquer Method with Ensembled VAEs [7.923088041693465]
We present an ensemble of lightweight VAEs to learn posteriors over subsets of the feature-space, which get aggregated into a joint posterior in a novel divide-and-conquer approach.
We show that our approach is robust to partial features at inference, exhibiting little performance degradation even with most features missing.
arXiv Detail & Related papers (2023-06-27T17:55:31Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data.
We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation.
arXiv Detail & Related papers (2022-05-16T11:23:42Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.