論文の概要: Mining Software Repositories for Expert Recommendation
- arxiv url: http://arxiv.org/abs/2504.16343v1
- Date: Wed, 23 Apr 2025 01:41:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.967766
- Title: Mining Software Repositories for Expert Recommendation
- Title(参考訳): 専門家レコメンデーションのためのソフトウェアリポジトリのマイニング
- Authors: Chad Marshall, Andrew Barovic, Armin Moin,
- Abstract要約: 我々は,大規模なオープンソースソフトウェアプロジェクトの開発者に対して,バグ割り当ての自動化アプローチを提案する。
このようにして、我々は、新しく報告された問題に割り当てられる特定の分野において、適切なレベルの専門知識を持つ最高の開発者を見つける責任を持つ、人間のバグトリアージを支援します。
- 参考スコア(独自算出の注目度): 3.481985817302898
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose an automated approach to bug assignment to developers in large open-source software projects. This way, we assist human bug triagers who are in charge of finding the best developer with the right level of expertise in a particular area to be assigned to a newly reported issue. Our approach is based on the history of software development as documented in the issue tracking systems. We deploy BERTopic and techniques from TopicMiner. Our approach works based on the bug reports' features, such as the corresponding products and components, as well as their priority and severity levels. We sort developers based on their experience with specific combinations of new reports. The evaluation is performed using Top-k accuracy, and the results are compared with the reported results in prior work, namely TopicMiner MTM, BUGZIE, Bug triaging via deep Reinforcement Learning BT-RL, and LDA-SVM. The evaluation data come from various Eclipse and Mozilla projects, such as JDT, Firefox, and Thunderbird.
- Abstract(参考訳): 我々は,大規模なオープンソースソフトウェアプロジェクトの開発者に対して,バグ割り当ての自動化アプローチを提案する。
このようにして、我々は、新しく報告された問題に割り当てられる特定の分野において、適切なレベルの専門知識を持つ最高の開発者を見つける責任を持つ、人間のバグトリアージを支援します。
当社のアプローチは,問題追跡システムに記録されているソフトウェア開発の歴史に基づいている。
TopicMinerからBERTopicとテクニックをデプロイします。
当社のアプローチは,バグレポートの機能,対応する製品やコンポーネント,優先度と重大度レベルに基づいています。
開発者を、新たなレポートの特定の組み合わせで、自身の経験に基づいてソートします。
TopicMiner MTM, BUGZIE, Bug triaging via Deep Reinforcement Learning BT-RL, and LDA-SVM。
評価データは、JDT、Firefox、Thunderbirdなど、さまざまなEclipseおよびMozillaプロジェクトのものだ。
関連論文リスト
- Automated Bug Report Prioritization in Large Open-Source Projects [3.9134031118910264]
本稿では,バグレポートの自然言語テキストに基づく自動バグ優先順位付け手法を提案する。
我々は、TopicMiner-MTMと呼ばれるLDAの変種を用いてトピックモデリングを行い、BERT大言語モデルを用いてテキスト分類を行う。
Eclipse Platformプロジェクトの85,156のバグレポートを含む既存のリファレンスデータセットを用いた実験結果から、バグレポートの優先度予測の正確性、正確性、リコール、F1測定の点で、既存のアプローチよりも優れています。
論文 参考訳(メタデータ) (2025-04-22T13:57:48Z) - Towards a Classification of Open-Source ML Models and Datasets for Software Engineering [52.257764273141184]
オープンソースの事前訓練モデル(PTM)とデータセットは、さまざまな機械学習(ML)タスクに広範なリソースを提供する。
これらのリソースには、ソフトウェア工学(SE)のニーズに合わせた分類がない。
我々は、人気のあるオープンソースのMLリポジトリであるHugging Face (HF)上で、SE指向の分類をPTMとデータセットに適用し、時間とともにPTMの進化を分析する。
論文 参考訳(メタデータ) (2024-11-14T18:52:05Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Alibaba LingmaAgent: Improving Automated Issue Resolution via Comprehensive Repository Exploration [64.19431011897515]
本稿では,問題解決のためにソフトウェアリポジトリ全体を包括的に理解し,活用するために設計された,新しいソフトウェアエンジニアリング手法であるAlibaba LingmaAgentを提案する。
提案手法では,重要なリポジトリ情報を知識グラフに凝縮し,複雑さを低減し,モンテカルロ木探索に基づく戦略を採用する。
Alibaba Cloudの製品展開と評価において、LingmaAgentは、開発エンジニアが直面した社内問題の16.9%を自動で解決し、手作業による介入で43.3%の問題を解決した。
論文 参考訳(メタデータ) (2024-06-03T15:20:06Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - MaintainoMATE: A GitHub App for Intelligent Automation of Maintenance
Activities [3.2228025627337864]
ソフトウェア開発プロジェクトは、バグ報告や強化要求といったメンテナンスタスクの追跡の中心にある問題追跡システムに依存している。
問題レポートの処理は極めて重要であり、問題レポートに入力されたテキストを徹底的にスキャンする必要があるため、労働集約的な作業となる。
各カテゴリのイシューレポートを自動的に分類し,関連する専門知識を持つ開発者にイシューレポートを割り当てることのできる,MaintainoMATEという統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-31T05:15:42Z) - Recommending Bug Assignment Approaches for Individual Bug Reports: An
Empirical Investigation [8.186068333538893]
バグレポートに対処できる潜在的な開発者を自動的に推薦する複数のアプローチが提案されている。
これらのアプローチは一般的に、あらゆるソフトウェアプロジェクトに提出されたバグレポートに対して機能するように設計されています。
2つのオープンソースシステムから2,249件のバグレポートに適用した3つのバグ割り当て手法を用いて,この推測を検証する実験的検討を行った。
論文 参考訳(メタデータ) (2023-05-29T23:02:56Z) - Multimodal Recommender Systems: A Survey [50.23505070348051]
マルチモーダル・レコメンダ・システム(MRS)は近年,学界と産業の両方から注目を集めている。
本稿では,主に技術的観点から,MSSモデルに関する総合的な調査を行う。
実装コードなど、調査された論文の詳細にアクセスするために、リポジトリをオープンソース化します。
論文 参考訳(メタデータ) (2023-02-08T05:12:54Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z) - S-DABT: Schedule and Dependency-Aware Bug Triage in Open-Source Bug
Tracking Systems [0.0]
手動のバグ修正のスケジューリングは、時間がかかり、面倒で、エラーを起こしやすい。
そこで我々は,S-DABT(Schedule and Dependency-aware Bug Triage)を提案する。
論文 参考訳(メタデータ) (2022-04-12T17:36:43Z) - Early Detection of Security-Relevant Bug Reports using Machine Learning:
How Far Are We? [6.438136820117887]
典型的なメンテナンスシナリオでは、セキュリティ関連バグレポートは、修正パッチを作成する際に開発チームによって優先される。
オープンなセキュリティ関連バグレポートは、攻撃者がゼロデイ攻撃を実行するために活用できる機密情報の重大な漏洩になる可能性がある。
近年,機械学習に基づくセキュリティ関連バグレポートの検出手法が,有望な性能で報告されている。
論文 参考訳(メタデータ) (2021-12-19T11:30:29Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
本稿では、深層学習に基づくスタックトレースの類似性を計算する最初のアプローチであるS3Mを紹介します。
BiLSTMエンコーダと、類似性を計算するための完全接続型分類器をベースとしている。
私たちの実験は、オープンソースデータとプライベートなJetBrainsデータセットの両方において、最先端のアプローチの優位性を示しています。
論文 参考訳(メタデータ) (2021-03-18T21:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。