論文の概要: Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
- arxiv url: http://arxiv.org/abs/2504.16443v2
- Date: Thu, 24 Apr 2025 01:22:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.017112
- Title: Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
- Title(参考訳): Marginalized Generalized IoU (MGIoU):任意の凸パラメトリック形状を最適化する統一目的関数
- Authors: Duy-Tho Le, Trung Pham, Jianfei Cai, Hamid Rezatofighi,
- Abstract要約: Marginalized Generalized IoU (MGIoU) は、一次元正規化GIoUを計算するために、構造凸形状をその特異な形状に投影することで課題を克服する新しい損失関数である。
標準ベンチマークの実験では、MGIoUとMGIoU+は、損失遅延を10-40倍に抑えながら、既存の損失を一貫して上回っている。
- 参考スコア(独自算出の注目度): 32.1114758137734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
- Abstract(参考訳): パラメトリック形状の類似性を最適化することは、IoU(Intersection over Union)が標準的尺度である多くのコンピュータビジョンタスクにおいて重要である。
しかし、既存の最適化手法では、L1/L2のような回帰に基づく損失はIoUと相関がなく、IoUに基づく損失は不安定で単純な形状に制限されており、タスク固有の手法は計算集約的であり、一般化不可能である。
その結果、パラメトリック形状の目的関数の現在の風景は散らばり、各領域は異なるIoU近似を提唱している。
この問題に対処するために,MGIoU (Marginalized Generalized IoU) を導入することでパラメトリック形状最適化の目的関数を統一する。
MGIoUはIoUと強く相関する単純で効率的で、完全に微分可能な近似を提供する。
MGIoU を MGIoU+ に拡張し,非構造凸形状の最適化を支援する。
MGIoUとMGIoU+は、多様なアプリケーション間でパラメトリック形状の最適化を統合する。
標準ベンチマークの実験では、MGIoUとMGIoU+は、損失計算のレイテンシを10~40倍に抑えながら、既存の損失を一貫して上回っている。
さらに、MGIoU と MGIoU+ は計量特性とスケール不変性を満足し、目的関数としてのロバスト性を保証する。
また,衝突のない軌道予測のようなタスクにおける重なりを最小化するためのMGIoU-を提案する。
コードはhttps://ldtho.github.io/MGIoUで公開されている。
関連論文リスト
- Regularized second-order optimization of tensor-network Born machines [2.8834278113855896]
ボルンマシン(英: Born Machine、TNBM)は、データ分布を学習するための量子インスパイアされた生成モデルである。
そこで本研究では,TNBMトレーニングにおける2次最適化手法を改良し,収束率と最適化モデルの品質を大幅に向上させる。
論文 参考訳(メタデータ) (2025-01-30T19:00:04Z) - Encoding arbitrary Ising Hamiltonians on Spatial Photonic Ising Machines [0.0]
本研究では,完全な相互作用行列を直接制御できるSPIMインスタンスを導入,実験的に検証する。
実験によって測定されたIsingエネルギーと理論的な期待値との整合性を実証し、未重み付きグラフ問題と重み付きグラフ問題の両方を解決する。
本手法は,システム固有の利点を犠牲にすることなく,実世界のアプリケーションに適用可能なSPIMを大幅に拡張する。
論文 参考訳(メタデータ) (2024-07-12T10:54:07Z) - Towards Universal Mesh Movement Networks [13.450178050669964]
我々はUniversal Mesh Movement Network (UM2N)を紹介する。
UM2Nは、異なるサイズ分布と構造を持つメッシュを動かすために、非侵入的ゼロショット方式で適用することができる。
本研究では, 実世界の津波シミュレーション事例とともに, 対流法とナビエ・ストークス法に基づく実例について検討した。
論文 参考訳(メタデータ) (2024-06-29T09:35:12Z) - Stochastic Optimal Control Matching [53.156277491861985]
最適制御のための新しい反復拡散最適化(IDO)技術である最適制御マッチング(SOCM)を導入する。
この制御は、一致するベクトル場に適合しようとすることで、最小二乗問題を通じて学習される。
実験により,本アルゴリズムは最適制御のための既存のすべての IDO 手法よりも低い誤差を実現する。
論文 参考訳(メタデータ) (2023-12-04T16:49:43Z) - ParaFormer: Parallel Attention Transformer for Efficient Feature
Matching [8.552303361149612]
本稿ではParaFormerという新しい並列アテンションモデルを提案する。
振幅と位相という概念を通じて特徴とキーポイントの位置を融合させ、平行して自己と横断性を統合する。
ホモグラフィー推定、ポーズ推定、画像マッチングなど様々な応用実験により、ParaFormerが最先端の性能を達成することを示す。
効率のよいParaFormer-Uは、既存のアテンションベースモデルの50%未満のFLOPで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-03-02T03:29:16Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Rethinking IoU-based Optimization for Single-stage 3D Object Detection [103.83141677242871]
本稿では回転分離型IoU(RDIoU)法を提案する。
我々のRDIoUは、回転変数を独立項として分離することで、回帰パラメータの複雑な相互作用を単純化する。
論文 参考訳(メタデータ) (2022-07-19T15:35:23Z) - Distribution-aware Margin Calibration for Semantic Segmentation in
Images [78.65312390695038]
ジャカードインデックス(ジャカードインデックス、Intersection-over-Union、IoU)は、画像セマンティックセグメンテーションにおいて最も重要な評価指標の一つである。
IoUスコアの直接最適化は非常に困難である。
学習目的として直接使用できるマージン校正法を提案し,データ分散に対するIoUの一般化を改良する。
論文 参考訳(メタデータ) (2021-12-21T22:38:25Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
本稿では,効率の良いエッジフェデレーション学習を実現するために,UM-AirCompフレームワークを提案する。
ローカルモデルパラメータを同時にアップロードし、アナログビームフォーミングを通じてグローバルモデルパラメータを更新する。
車両間自動運転シミュレーションプラットフォームにおけるUM-AirCompの実装を実演する。
論文 参考訳(メタデータ) (2021-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。