論文の概要: Cross Paradigm Representation and Alignment Transformer for Image Deraining
- arxiv url: http://arxiv.org/abs/2504.16455v1
- Date: Wed, 23 Apr 2025 06:44:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.028956
- Title: Cross Paradigm Representation and Alignment Transformer for Image Deraining
- Title(参考訳): 画像レイニングのためのクロスパラダイム表現とアライメント変換器
- Authors: Shun Zou, Yi Zou, Juncheng Li, Guangwei Gao, Guojun Qi,
- Abstract要約: クロスパラダイム表現・アライメント変換器(CPRAformer)を提案する。
その中心となる考え方は階層的な表現とアライメントであり、両方のパラダイムの強みを活用して画像再構成を支援する。
トランスフォーマーブロックでは,スパースプロンプトチャネル自己アテンション(SPC-SA)と空間画素改善自己アテンション(SPR-SA)の2種類の自己アテンションを使用する。
- 参考スコア(独自算出の注目度): 40.66823807648992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based networks have achieved strong performance in low-level vision tasks like image deraining by utilizing spatial or channel-wise self-attention. However, irregular rain patterns and complex geometric overlaps challenge single-paradigm architectures, necessitating a unified framework to integrate complementary global-local and spatial-channel representations. To address this, we propose a novel Cross Paradigm Representation and Alignment Transformer (CPRAformer). Its core idea is the hierarchical representation and alignment, leveraging the strengths of both paradigms (spatial-channel and global-local) to aid image reconstruction. It bridges the gap within and between paradigms, aligning and coordinating them to enable deep interaction and fusion of features. Specifically, we use two types of self-attention in the Transformer blocks: sparse prompt channel self-attention (SPC-SA) and spatial pixel refinement self-attention (SPR-SA). SPC-SA enhances global channel dependencies through dynamic sparsity, while SPR-SA focuses on spatial rain distribution and fine-grained texture recovery. To address the feature misalignment and knowledge differences between them, we introduce the Adaptive Alignment Frequency Module (AAFM), which aligns and interacts with features in a two-stage progressive manner, enabling adaptive guidance and complementarity. This reduces the information gap within and between paradigms. Through this unified cross-paradigm dynamic interaction framework, we achieve the extraction of the most valuable interactive fusion information from the two paradigms. Extensive experiments demonstrate that our model achieves state-of-the-art performance on eight benchmark datasets and further validates CPRAformer's robustness in other image restoration tasks and downstream applications.
- Abstract(参考訳): トランスフォーマーベースのネットワークは,空間的・チャネル的自己意識を利用して,イメージデライニングのような低レベルの視覚タスクにおいて高いパフォーマンスを実現している。
しかし、不規則な降雨パターンと複雑な幾何重なり合いは単一パラダイムアーキテクチャに挑戦し、補完的なグローバル局所および空間チャネル表現を統合するための統合されたフレームワークを必要とする。
そこで本研究では,Cross Paradigm Representation and Alignment Transformer (CPRAformer)を提案する。
その中心となる考え方は階層的表現とアライメントであり、画像再構成を支援するために両方のパラダイム(空間チャネルとグローバルローカル)の強みを活用する。
パラダイム内とパラダイム間のギャップを埋め、それらの調整と調整を行い、機能の深い相互作用と融合を可能にします。
具体的には,トランスフォーマーブロックにおいて,スパースプロンプトチャネル自己アテンション(SPC-SA)と空間画素改善自己アテンション(SPR-SA)の2種類の自己アテンションを使用する。
SPC-SAは動的疎水性によりグローバルチャネル依存性を高める一方、SPR-SAは空間降雨分布ときめ細かいテクスチャ回復に焦点を当てている。
特徴の相違と知識の相違に対処するため,適応的適応周波数モジュール(AAFM)を導入し,適応的ガイダンスと相補性を実現する。
これにより、パラダイム内とパラダイム間の情報ギャップが減少します。
この統合されたパラダイム間動的相互作用フレームワークにより、2つのパラダイムから最も価値のある相互融合情報を抽出する。
大規模な実験により,我々のモデルは8つのベンチマークデータセット上で最先端のパフォーマンスを達成し,他の画像復元タスクや下流アプリケーションにおけるCPRAformerの堅牢性をさらに検証した。
関連論文リスト
- RSRWKV: A Linear-Complexity 2D Attention Mechanism for Efficient Remote Sensing Vision Task [20.16344973940904]
高分解能リモートセンシング分析は、シーンの複雑さとスケールの多様性による課題に直面している。
逐次処理と2次元空間推論を橋渡しする新しい2D-WKVスキャン機構を特徴とするSRWKVを提案する。
論文 参考訳(メタデータ) (2025-03-26T10:03:46Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - IPT-V2: Efficient Image Processing Transformer using Hierarchical Attentions [26.09373405194564]
我々は,IPTV2と呼ばれる階層的な注意を払って,効率的な画像処理トランスフォーマアーキテクチャを提案する。
我々は、局所的およびグローバルな受容領域における適切なトークン相互作用を得るために、焦点コンテキスト自己注意(FCSA)とグローバルグリッド自己注意(GGSA)を採用する。
提案した IPT-V2 は,様々な画像処理タスクにおいて,デノナイズ,デブロアリング,デコライニングを網羅し,従来の手法よりも性能と計算の複雑さのトレードオフを得る。
論文 参考訳(メタデータ) (2024-03-31T10:01:20Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
画像デハージングのための相互情報駆動型トリプルインタラクションネットワーク(MITNet)を提案する。
振幅誘導ヘイズ除去と呼ばれる第1段階は、ヘイズ除去のためのヘイズ画像の振幅スペクトルを復元することを目的としている。
第2段階は位相誘導構造が洗練され、位相スペクトルの変換と微細化を学ぶことに尽力した。
論文 参考訳(メタデータ) (2023-08-14T08:23:58Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
画像SRのための新しいトランスモデルDual Aggregation Transformerを提案する。
DATは、ブロック間およびブロック内二重方式で、空間次元とチャネル次元にまたがる特徴を集約する。
我々のDATは現在の手法を超越している。
論文 参考訳(メタデータ) (2023-08-07T07:39:39Z) - Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based
Transformer Network for Remote Sensing Image Super-Resolution [13.894645293832044]
変換器を用いたモデルでは、リモートセンシング画像超解像(RSISR)の競合性能が示されている。
本稿では,RSISRのための新しいトランスアーキテクチャであるCross-Spatial Pixel IntegrationとCross-Stage Feature Fusion Based Transformer Network (SPIFFNet)を提案する。
提案手法は,画像全体のグローバル認知と理解を効果的に促進し,機能統合の効率化を図っている。
論文 参考訳(メタデータ) (2023-07-06T13:19:06Z) - Hierarchical Cross-modal Transformer for RGB-D Salient Object Detection [6.385624548310884]
本稿では,新しいマルチモーダルトランスである階層型クロスモーダルトランス (HCT) を提案する。
2つのモードから全てのパッチを直接接続する以前のマルチモーダル変圧器とは異なり、クロスモーダル相補性は階層的に検討する。
本稿では,Transformer (FPT) 用のFeature Pyramidモジュールを提案する。
論文 参考訳(メタデータ) (2023-02-16T03:23:23Z) - Cross-View Panorama Image Synthesis [68.35351563852335]
PanoGANは、新しい敵対的フィードバックGANフレームワークである。
PanoGANは、最先端のアプローチよりもより説得力のある、高品質なパノラマ画像生成を可能にする。
論文 参考訳(メタデータ) (2022-03-22T15:59:44Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。