論文の概要: Case Study: Fine-tuning Small Language Models for Accurate and Private CWE Detection in Python Code
- arxiv url: http://arxiv.org/abs/2504.16584v1
- Date: Wed, 23 Apr 2025 10:05:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 17:00:09.342766
- Title: Case Study: Fine-tuning Small Language Models for Accurate and Private CWE Detection in Python Code
- Title(参考訳): ケーススタディ:Pythonコードにおける精度およびプライベートCWE検出のための微調整小言語モデル
- Authors: Md. Azizul Hakim Bappy, Hossen A Mustafa, Prottoy Saha, Rajinus Salehat,
- Abstract要約: 大規模言語モデル(LLM)は、セキュリティ脆弱性に対するコードの理解と分析において重要な機能を示している。
この研究は、正確でオンプレミスの脆弱性検出に有効な代替手段として、Small Language Models(SLM)の可能性を探るものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated significant capabilities in understanding and analyzing code for security vulnerabilities, such as Common Weakness Enumerations (CWEs). However, their reliance on cloud infrastructure and substantial computational requirements pose challenges for analyzing sensitive or proprietary codebases due to privacy concerns and inference costs. This work explores the potential of Small Language Models (SLMs) as a viable alternative for accurate, on-premise vulnerability detection. We investigated whether a 350-million parameter pre-trained code model (codegen-mono) could be effectively fine-tuned to detect the MITRE Top 25 CWEs specifically within Python code. To facilitate this, we developed a targeted dataset of 500 examples using a semi-supervised approach involving LLM-driven synthetic data generation coupled with meticulous human review. Initial tests confirmed that the base codegen-mono model completely failed to identify CWEs in our samples. However, after applying instruction-following fine-tuning, the specialized SLM achieved remarkable performance on our test set, yielding approximately 99% accuracy, 98.08% precision, 100% recall, and a 99.04% F1-score. These results strongly suggest that fine-tuned SLMs can serve as highly accurate and efficient tools for CWE detection, offering a practical and privacy-preserving solution for integrating advanced security analysis directly into development workflows.
- Abstract(参考訳): LLM(Large Language Models)は、CWE(Common Weakness Enumerations)など、セキュリティ脆弱性のコードを理解し解析する重要な機能を示している。
しかしながら、クラウドインフラストラクチャと相当量の計算要件への依存は、プライバシの懸念と推論コストによる機密性やプロプライエタリなコードベースの分析に問題を引き起こす。
この研究は、正確でオンプレミスの脆弱性検出に有効な代替手段として、Small Language Models(SLM)の可能性を探るものである。
350万のパラメータを事前学習したコードモデル(codegen-mono)を効果的に微調整して,Pythonコード内でのMITRE Top 25 CWEを検出できるかどうかを検討した。
そこで我々は,LLM駆動型合成データ生成と精巧な人間レビューを組み合わせた半教師付きアプローチを用いて,500のサンプルを対象とするデータセットを開発した。
初回試験では, 塩基性コーデゲンモノモデルでは試料中のCWEを同定できなかった。
しかし、命令追従微調整を施した後、特殊SLMは、約99%の精度、98.08%の精度、100%のリコール、99.04%のF1スコアを実現した。
これらの結果は、微調整のSLMがCWE検出の高精度かつ効率的なツールとして機能し、高度なセキュリティ分析を直接開発ワークフローに統合するための実用的でプライバシー保護のソリューションを提供することを強く示唆している。
関連論文リスト
- CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection [2.5228276786940182]
本稿では,異なる手法の脆弱性検出能力を評価するためのベンチマークフレームワークであるCASTLEを紹介する。
我々は,25個のCWEをカバーする250個のマイクロベンチマークプログラムを手作りしたデータセットを用いて,静的解析ツール13,LLM10,形式検証ツール2を評価した。
論文 参考訳(メタデータ) (2025-03-12T14:30:05Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
大規模言語モデル(LLM)の最近の進歩は、コーディングベンチマークのパフォーマンスを改善している。
しかし、手軽に利用できる高品質なデータの枯渇により、改善は停滞している。
本稿では,単一モデルのコードとテスト生成能力を共同で改善するセルフプレイ・ソルバ検証フレームワークであるSol-Verを提案する。
論文 参考訳(メタデータ) (2025-02-20T18:32:19Z) - Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - Automated Software Vulnerability Static Code Analysis Using Generative Pre-Trained Transformer Models [0.8192907805418583]
生成事前学習トランスフォーマーモデルは、様々な自然言語処理タスクにおいて驚くほど効果的であることが示されている。
我々は,脆弱なコード構文の存在を自動的に識別するタスクにおいて,オープンソースのGPTモデルの有効性を評価する。
論文 参考訳(メタデータ) (2024-07-31T23:33:26Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
脆弱性検出のためのMSIVD, マルチタスクによる自己指示型微調整を, チェーン・オブ・シント・プロンプトとLDMによる自己指示にインスパイアした。
実験の結果,MSIVDは高い性能を示し,LineVul(LLMベースの脆弱性検出ベースライン)はBigVulデータセットでは0.92点,PreciseBugsデータセットでは0.48点であった。
論文 参考訳(メタデータ) (2024-06-09T19:18:05Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - How secure is AI-generated Code: A Large-Scale Comparison of Large Language Models [3.4887856546295333]
本研究では,C言語記述時の脆弱性発生傾向について,最先端のLarge Language Model (LLM)を比較した。
生成されたプログラムの少なくとも62.07%は脆弱性がある。
論文 参考訳(メタデータ) (2024-04-29T01:24:14Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
我々は,主に半教師あり学習の手法として,自己学習について研究している。
我々は,新しい不確かさを意識した自己学習フレームワークであるUPETを紹介する。
UPETは性能と効率の面で大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-10-19T02:18:29Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
機械学習の安全性クリティカルな応用においては、モデルが保守的であることが望ましいことが多い。
本研究では,不確実性データセットに対する信頼性を最小化するデータ駆動信頼性最小化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:05:36Z) - Estimating Large Language Model Capabilities without Labeled Test Data [51.428562302037534]
大規模言語モデル(LLM)は、ほんの数例からICL(In-context Learning)を実行するという印象的な能力を持っている。
ICLの精度推定タスクを提案し、新しいタスクで文脈内学習を行う場合のLLMの精度を予測する。
論文 参考訳(メタデータ) (2023-05-24T06:55:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。