Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models
- URL: http://arxiv.org/abs/2504.16635v1
- Date: Wed, 23 Apr 2025 11:54:22 GMT
- Title: Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models
- Authors: Fredy Pokou, Jules Sadefo Kamdem, François Benhmad,
- Abstract summary: We propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning.<n>Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem.<n> Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management.
Related papers
- Portfolio Stress Testing and Value at Risk (VaR) Incorporating Current Market Conditions [0.0]
This paper proposes an approach for incorporating prevailing market conditions in stress scenario design and estimation of VaR.
The proposed approach is based on historical data where historical observations of market changes are given more weight if a certain period in history is "more similar" to the prevailing market conditions.
arXiv Detail & Related papers (2024-09-12T03:20:25Z) - RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making.
We propose RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively.
RAGIC's generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality.
arXiv Detail & Related papers (2024-02-16T15:34:07Z) - C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models [57.10361282229501]
We propose C-RAG, the first framework to certify generation risks for RAG models.
Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks.
We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial.
arXiv Detail & Related papers (2024-02-05T16:46:16Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Combining Deep Learning and GARCH Models for Financial Volatility and
Risk Forecasting [0.0]
We develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks.
For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH.
Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices.
arXiv Detail & Related papers (2023-10-02T10:18:13Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Deep Stochastic Volatility Model [3.3970049571884204]
We propose a deep volatility model (DSVM) based on the framework of deep latent variable models.
It uses flexible deep learning models to automatically detect the dependence of the future volatility on past returns.
In real data analysis, the DSVM outperforms several popular alternative volatility models.
arXiv Detail & Related papers (2021-02-25T03:25:33Z) - Encoded Value-at-Risk: A Predictive Machine for Financial Risk
Management [0.0]
We provide a novel approach for measuring market risk called Encoded Value-at-Risk (Encoded VaR)
Encoded VaR is based on a type of artificial neural network, called Variational Auto-encoders (VAEs)
arXiv Detail & Related papers (2020-11-13T03:25:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.