Resource Reduction in Multiparty Quantum Secret Sharing of both Classical and Quantum Information under Noisy Scenario
- URL: http://arxiv.org/abs/2504.16709v1
- Date: Wed, 23 Apr 2025 13:40:06 GMT
- Title: Resource Reduction in Multiparty Quantum Secret Sharing of both Classical and Quantum Information under Noisy Scenario
- Authors: Nirupam Basak, Goutam Paul,
- Abstract summary: Quantum secret sharing (QSS) enables secure distribution of information among multiple parties but remains vulnerable to noise.<n>We analyze the effects of bit-flip, phase-flip, and amplitude damping noise on the multiparty QSS for classical message (QSSCM) and secret sharing of quantum information (SSQI) protocols.<n>We introduce an efficient quantum error correction scheme based on a simplified version of Shor's code.
- Score: 4.757470449749876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum secret sharing (QSS) enables secure distribution of information among multiple parties but remains vulnerable to noise. We analyze the effects of bit-flip, phase-flip, and amplitude damping noise on the multiparty QSS for classical message (QSSCM) and secret sharing of quantum information (SSQI) protocols proposed by Zhang et al. (Phys. Rev. A, 71:044301, 2005). To scale down these effects, we introduce an efficient quantum error correction (QEC) scheme based on a simplified version of Shor's code. Leveraging the specific structure of the QSS protocols, we reduce the qubit overhead from the standard 9 of Shor's code to as few as 3 while still achieving lower average error rates than existing QEC methods. Thus, our approach can also be adopted for other single-qubit-based quantum protocols. Simulations demonstrate that our approach significantly enhances the protocols' resilience, improving their practicality for real-world deployment.
Related papers
- Controlled-Quantum secure remote sensing [0.6749750044497732]
decoherence in the quantum communication channel and during the evolution of quantum states can erode quantum sensing advantages.
We introduce a modified protocol incorporating local quantum optimal control (QOC) operations to address noise in SQS.
The protocol actively mitigates noise, enhancing the achievable quantum Fisher information (QFI) and the classical Fisher information (CFI) based on the chosen measurement strategy.
arXiv Detail & Related papers (2025-04-25T06:10:58Z) - Machine Learning assisted noise classification with Quantum Key Distribution protocols [0.7373617024876725]
We consider the quantum bit error rates (QBERs) generated in quantum key distribution schemes under consideration of different noises.<n>Our protocol classifies quantum noises with high accuracy under the assumption of two different scenarios.<n>Our method is based on classical post processing of data generated from very simplistic quantum protocols.
arXiv Detail & Related papers (2025-04-01T12:30:47Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Optimal Quantum Purity Amplification [2.05170973574812]
We present the optimal QPA protocol for general quantum systems and global noise.<n>We provide an efficient implementation of the protocol based on generalized quantum phase estimation.<n> Numerical simulations demonstrate the effectiveness of our protocol applied to quantum simulation of Hamiltonian evolution.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.