Controlled-Quantum secure remote sensing
- URL: http://arxiv.org/abs/2504.18102v1
- Date: Fri, 25 Apr 2025 06:10:58 GMT
- Title: Controlled-Quantum secure remote sensing
- Authors: Muhammad Talha Rahim, Saif Al-Kuwari, Mahmood Irtiza Hussain, Asad Ali,
- Abstract summary: decoherence in the quantum communication channel and during the evolution of quantum states can erode quantum sensing advantages.<n>We introduce a modified protocol incorporating local quantum optimal control (QOC) operations to address noise in SQS.<n>The protocol actively mitigates noise, enhancing the achievable quantum Fisher information (QFI) and the classical Fisher information (CFI) based on the chosen measurement strategy.
- Score: 0.6749750044497732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum resources enable secure quantum sensing (SQS) of remote systems, offering significant advantages in precision and security. However, decoherence in the quantum communication channel and during the evolution of quantum states can erode these advantages. In this work, we first propose a general $N-$particle scheme that achieves Heisenberg-limited (HL) scaling for single-parameter estimation in the presence of an ideal quantum communication channel and encoding scenario. For non-ideal dynamics, we introduce a modified protocol incorporating local quantum optimal control (QOC) operations to address noise in SQS under generalized Pauli dephasing and parallel dephasing noise. We analyze two distinct scenarios: a noiseless communication channel with noisy evolution, and a noisy communication channel with noisy evolution. For the noisy channel, we model the link between the communicating parties as a depolarizing channel. The protocol leverages QOC operations to actively mitigate noise, enhancing the achievable quantum Fisher information (QFI) and the classical Fisher information (CFI) based on the chosen measurement strategy.
Related papers
- Machine Learning assisted noise classification with Quantum Key Distribution protocols [0.7373617024876725]
We consider the quantum bit error rates (QBERs) generated in quantum key distribution schemes under consideration of different noises.<n>Our protocol classifies quantum noises with high accuracy under the assumption of two different scenarios.<n>Our method is based on classical post processing of data generated from very simplistic quantum protocols.
arXiv Detail & Related papers (2025-04-01T12:30:47Z) - Security Enhancement of Quantum Communication in Space-Air-Ground Integrated Networks [7.404591865944407]
Quantum teleportation achieves the transmission of quantum states through quantum channels.
We propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels.
arXiv Detail & Related papers (2024-10-22T14:27:21Z) - Optimal Quantum Purity Amplification [2.05170973574812]
We present the optimal QPA protocol for general quantum systems and global noise.<n>We provide an efficient implementation of the protocol based on generalized quantum phase estimation.<n> Numerical simulations demonstrate the effectiveness of our protocol applied to quantum simulation of Hamiltonian evolution.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Learning Quantum Entanglement Distillation with Noisy Classical
Communications [39.000858564696856]
entanglement distillation aims to enhance the fidelity of entangled qubits through local operations and classical communication.
Existing distillation protocols assume the availability of ideal, noiseless, communication channels.
In this paper, we study the case in which communication takes place over noisy binary symmetric channels.
arXiv Detail & Related papers (2022-05-17T18:10:16Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Two-way covert quantum communication in the microwave regime [0.0]
Quantum communication addresses the problem of exchanging information across macroscopic distances.
We advance a new paradigm for secure quantum communication by combining backscattering concepts with covert communication in the microwave regime.
This work makes a decisive step toward implementing secure quantum communication concepts in the previously uncharted $1$-$10$ GHz frequency range.
arXiv Detail & Related papers (2020-04-15T16:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.