Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks
- URL: http://arxiv.org/abs/2504.16748v2
- Date: Thu, 24 Apr 2025 14:26:02 GMT
- Title: Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks
- Authors: Yanan Zhao, Feng Ji, Kai Zhao, Xuhao Li, Qiyu Kang, Wenfei Liang, Yahya Alkhatib, Xingchao Jian, Wee Peng Tay,
- Abstract summary: Graph Contrastive Learning (GCL) has recently made progress as an unsupervised graph representation learning paradigm.<n>We introduce a novel augmentation-free GCL framework based on graph neural diffusion models.<n>We demonstrate that our model does not require negative samples for training and is applicable to both homophilic and heterophilic datasets.
- Score: 24.778889911467438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Contrastive Learning (GCL) has recently made progress as an unsupervised graph representation learning paradigm. GCL approaches can be categorized into augmentation-based and augmentation-free methods. The former relies on complex data augmentations, while the latter depends on encoders that can generate distinct views of the same input. Both approaches may require negative samples for training. In this paper, we introduce a novel augmentation-free GCL framework based on graph neural diffusion models. Specifically, we utilize learnable encoders governed by Fractional Differential Equations (FDE). Each FDE is characterized by an order parameter of the differential operator. We demonstrate that varying these parameters allows us to produce learnable encoders that generate diverse views, capturing either local or global information, for contrastive learning. Our model does not require negative samples for training and is applicable to both homophilic and heterophilic datasets. We demonstrate its effectiveness across various datasets, achieving state-of-the-art performance.
Related papers
- Generative-Enhanced Heterogeneous Graph Contrastive Learning [11.118517297006894]
Heterogeneous Graphs (HGs) can effectively model complex relationships in the real world by multi-type nodes and edges.
In recent years, inspired by self-supervised learning, contrastive Heterogeneous Graphs Neural Networks (HGNNs) have shown great potential by utilizing data augmentation and contrastive discriminators for downstream tasks.
We propose a novel Generative-Enhanced Heterogeneous Graph Contrastive Learning (GHGCL)
arXiv Detail & Related papers (2024-04-03T15:31:18Z) - DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation [48.25619775814776]
This paper proposes DiffAug, a novel unsupervised contrastive learning technique with diffusion mode-based positive data generation.
DiffAug consists of a semantic encoder and a conditional diffusion model; the conditional diffusion model generates new positive samples conditioned on the semantic encoding.
Experimental evaluations show that DiffAug outperforms hand-designed and SOTA model-based augmentation methods on DNA sequence, visual, and bio-feature datasets.
arXiv Detail & Related papers (2023-09-10T13:28:46Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIEL consistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks.
ARIEL is more robust in the face of adversarial attacks.
arXiv Detail & Related papers (2022-08-15T01:24:42Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV)
NPC-LV is a learning framework for any dataset with abundant unlabeled data but very few labeled ones.
We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime.
arXiv Detail & Related papers (2022-06-23T09:35:03Z) - Integrating Prior Knowledge in Contrastive Learning with Kernel [4.050766659420731]
We use kernel theory to propose a novel loss, called decoupled uniformity, that i) allows the integration of prior knowledge and ii) removes the negative-positive coupling in the original InfoNCE loss.
In an unsupervised setting, we empirically demonstrate that CL benefits from generative models to improve its representation both on natural and medical images.
arXiv Detail & Related papers (2022-06-03T15:43:08Z) - AutoGCL: Automated Graph Contrastive Learning via Learnable View
Generators [22.59182542071303]
We propose a novel framework named Automated Graph Contrastive Learning (AutoGCL) in this paper.
AutoGCL employs a set of learnable graph view generators orchestrated by an auto augmentation strategy.
Experiments on semi-supervised learning, unsupervised learning, and transfer learning demonstrate the superiority of our framework over the state-of-the-arts in graph contrastive learning.
arXiv Detail & Related papers (2021-09-21T15:34:11Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.