ViMoTest: A Tool to Specify ViewModel-Based GUI Test Scenarios using Projectional Editing
- URL: http://arxiv.org/abs/2504.16753v1
- Date: Wed, 23 Apr 2025 14:26:35 GMT
- Title: ViMoTest: A Tool to Specify ViewModel-Based GUI Test Scenarios using Projectional Editing
- Authors: Mario Fuksa, Sandro Speth, Steffen Becker,
- Abstract summary: We introduce the ViMoTest tool to test presentation logic independently of GUI frameworks.<n>We demonstrate the tool with a small JavaFX-based task manager example and generate executable code.
- Score: 0.8010120037374623
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Automated GUI testing is crucial in ensuring that presentation logic behaves as expected. However, existing tools often apply end-to-end approaches and face challenges such as high specification efforts, maintenance difficulties, and flaky tests while coupling to GUI framework specifics. To address these challenges, we introduce the ViMoTest tool, which leverages Behavior-driven Development, the ViewModel architectural pattern, and projectional Domain-specific Languages (DSLs) to isolate and test presentation logic independently of GUI frameworks. We demonstrate the tool with a small JavaFX-based task manager example and generate executable code.
Related papers
- WorldGUI: Dynamic Testing for Comprehensive Desktop GUI Automation [20.11855701656702]
We present WorldGUI, a novel GUI benchmark that designs GUI tasks with various initial states to simulate real computer-user interactions.
We also propose GUI-Thinker, a holistic framework, that effectively manages the unpredictability and complexity of GUI interactions.
arXiv Detail & Related papers (2025-02-12T01:06:10Z) - GUI-Bee: Align GUI Action Grounding to Novel Environments via Autonomous Exploration [56.58744345634623]
We propose GUI-Bee, an MLLM-based autonomous agent, to collect high-quality, environment-specific data through exploration.
We also introduce NovelScreenSpot, a benchmark for testing how well the data can help align GUI action grounding models to novel environments.
arXiv Detail & Related papers (2025-01-23T18:16:21Z) - GUI Testing Arena: A Unified Benchmark for Advancing Autonomous GUI Testing Agent [24.97846085313314]
We propose a formalized and comprehensive environment to evaluate the entire process of automated GUI Testing.<n>We divide the testing process into three key subtasks: test intention generation, test task execution, and GUI defect detection.<n>It evaluates the performance of different models using three data types: real mobile applications, mobile applications with artificially injected defects, and synthetic data.
arXiv Detail & Related papers (2024-12-24T13:41:47Z) - Zero-Shot Prompting Approaches for LLM-based Graphical User Interface Generation [53.1000575179389]
We propose a Retrieval-Augmented GUI Generation (RAGG) approach, integrated with an LLM-based GUI retrieval re-ranking and filtering mechanism.<n>In addition, we adapt Prompt Decomposition (PDGG) and Self-Critique (SCGG) for GUI generation.<n>Our evaluation, which encompasses over 3,000 GUI annotations from over 100 crowd-workers with UI/UX experience, shows that SCGG, in contrast to PDGG and RAGG, can lead to more effective GUI generation.
arXiv Detail & Related papers (2024-12-15T22:17:30Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
We introduce Aguvis, a unified vision-based framework for autonomous GUI agents.<n>Our approach leverages image-based observations, and grounding instructions in natural language to visual elements.<n>To address the limitations of previous work, we integrate explicit planning and reasoning within the model.
arXiv Detail & Related papers (2024-12-05T18:58:26Z) - Seeing is Believing: Vision-driven Non-crash Functional Bug Detection for Mobile Apps [26.96558418166514]
This paper proposes a novel vision-driven, multi-agent collaborative automated GUI testing approach for detecting non-crash functional bugs.<n>We evaluate Trident on 590 non-crash bugs and compare it with 12 baselines, it can achieve more than 14%-112% and 108%-147% boost in average recall and precision.
arXiv Detail & Related papers (2024-07-03T11:58:09Z) - GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding [73.9254861755974]
This paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations.<n>We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content.
arXiv Detail & Related papers (2024-06-16T06:56:53Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUI is a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks.
Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software.
Our evaluation reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks.
arXiv Detail & Related papers (2024-06-14T17:59:08Z) - Interlinking User Stories and GUI Prototyping: A Semi-Automatic LLM-based Approach [55.762798168494726]
We present a novel Large Language Model (LLM)-based approach for validating the implementation of functional NL-based requirements in a graphical user interface (GUI) prototype.
Our approach aims to detect functional user stories that are not implemented in a GUI prototype and provides recommendations for suitable GUI components directly implementing the requirements.
arXiv Detail & Related papers (2024-06-12T11:59:26Z) - Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin [0.559239450391449]
This paper presents GIPGUT: a prototype of a gamification plugin for IntelliJ IDEA.
The plugin enhances testers' engagement with typically monotonous and tedious tasks through achievements, rewards, and profile customization.
The results indicate high usability and positive reception of the gamification elements.
arXiv Detail & Related papers (2024-03-14T20:11:11Z) - Applied Awareness: Test-Driven GUI Development using Computer Vision and
Cryptography [0.0]
Test-driven development is impractical: it generally requires an initial implementation of the GUI to generate golden images or to construct interactive test scenarios.
We demonstrate a novel and immediately applicable approach of interpreting GUI presentation in terms of backend communications.
This focus on backend communication circumvents deficiencies in typical testing methodologies that rely on platform-dependent UI affordances or accessibility features.
arXiv Detail & Related papers (2020-06-05T22:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.