Monte Carlo Planning with Large Language Model for Text-Based Game Agents
- URL: http://arxiv.org/abs/2504.16855v1
- Date: Wed, 23 Apr 2025 16:23:15 GMT
- Title: Monte Carlo Planning with Large Language Model for Text-Based Game Agents
- Authors: Zijing Shi, Meng Fang, Ling Chen,
- Abstract summary: We introduce the Monte Carlo planning with Dynamic Memory-guided Large language model (MC-DML) algorithm.<n>MC-DML leverages the language understanding and reasoning capabilities of Large Language Models (LLMs) alongside the exploratory advantages of tree search algorithms.<n>Our results demonstrate that the MC-DML algorithm significantly enhances performance across various games at the initial planning phase.
- Score: 27.385517721352368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-based games provide valuable environments for language-based autonomous agents. However, planning-then-learning paradigms, such as those combining Monte Carlo Tree Search (MCTS) and reinforcement learning (RL), are notably time-consuming due to extensive iterations. Additionally, these algorithms perform uncertainty-driven exploration but lack language understanding and reasoning abilities. In this paper, we introduce the Monte Carlo planning with Dynamic Memory-guided Large language model (MC-DML) algorithm. MC-DML leverages the language understanding and reasoning capabilities of Large Language Models (LLMs) alongside the exploratory advantages of tree search algorithms. Specifically, we enhance LLMs with in-trial and cross-trial memory mechanisms, enabling them to learn from past experiences and dynamically adjust action evaluations during planning. We conduct experiments on a series of text-based games from the Jericho benchmark. Our results demonstrate that the MC-DML algorithm significantly enhances performance across various games at the initial planning phase, outperforming strong contemporary methods that require multiple iterations. This demonstrates the effectiveness of our algorithm, paving the way for more efficient language-grounded planning in complex environments.
Related papers
- Large Language Models as Common-Sense Heuristics [0.9093413254392775]
Large Language Models (LLMs) possess parametrised knowledge across a wide range of topics, enabling them to leverage the natural language descriptions of planning tasks in their solutions.<n>We introduce a novel planning method, which leverages the parametrised knowledge of LLMs by using their output as a for Hill-Climbing Search.<n>Our method outperforms the task success rate of similar systems within a common household environment by 22 percentage points, with consistently executable plans.
arXiv Detail & Related papers (2025-01-31T00:26:38Z) - Mastering Board Games by External and Internal Planning with Language Models [30.782334791241556]
We show that search-based planning can yield significant improvements in Large Language Models game-playing strength.
We introduce, compare and contrast two major approaches: in external search, the model guides Monte Carlo Tree Search rollouts and evaluations without calls to an external game engine, and in internal search, the model is trained to generate in-context a linearized tree of search and a resulting final choice.
Our proposed approach, combining search with domain knowledge, is not specific to board games, hinting at more general future applications.
arXiv Detail & Related papers (2024-12-02T18:56:51Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Enabling MCTS Explainability for Sequential Planning Through Computation Tree Logic [8.832654509932565]
Monte Carlo tree search (MCTS) is one of the most capable online search algorithms for sequential planning tasks.
Despite its strong performance in real-world deployment, the inherent computation of MCTS makes it challenging to understand for users without technical background.
This paper considers the use of MCTS in transportation routing services, where the algorithm is integrated to develop optimized route plans.
arXiv Detail & Related papers (2024-07-15T15:35:09Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
This paper explores DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to understand dynamic scenes.<n>Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes.<n>We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and several in-the-wild scenarios.
arXiv Detail & Related papers (2024-01-16T14:33:09Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
We present L2CEval, a systematic evaluation of the language-to-code generation capabilities of large language models (LLMs)
We analyze the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods.
In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs.
arXiv Detail & Related papers (2023-09-29T17:57:00Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.