論文の概要: Whence Is A Model Fair? Fixing Fairness Bugs via Propensity Score Matching
- arxiv url: http://arxiv.org/abs/2504.17066v2
- Date: Thu, 01 May 2025 07:20:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.155684
- Title: Whence Is A Model Fair? Fixing Fairness Bugs via Propensity Score Matching
- Title(参考訳): モデルフェアはいつ? 確率スコアマッチングによるフェアネスバグの修正
- Authors: Kewen Peng, Yicheng Yang, Hao Zhuo,
- Abstract要約: サンプルデータのトレーニングやテストの方法がフェアネス指標の信頼性に影響を及ぼすかどうかを検討する。
トレーニングデータとテストセットは、しばしば同じ集団からランダムにサンプリングされるため、トレーニングデータに存在するバイアスは、テストデータにまだ存在する可能性がある。
偏見の評価と緩和に適合性スコアマッチングを適用した後処理法であるFairMatchを提案する。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness-aware learning aims to mitigate discrimination against specific protected social groups (e.g., those categorized by gender, ethnicity, age) while minimizing predictive performance loss. Despite efforts to improve fairness in machine learning, prior studies have shown that many models remain unfair when measured against various fairness metrics. In this paper, we examine whether the way training and testing data are sampled affects the reliability of reported fairness metrics. Since training and test sets are often randomly sampled from the same population, bias present in the training data may still exist in the test data, potentially skewing fairness assessments. To address this, we propose FairMatch, a post-processing method that applies propensity score matching to evaluate and mitigate bias. FairMatch identifies control and treatment pairs with similar propensity scores in the test set and adjusts decision thresholds for different subgroups accordingly. For samples that cannot be matched, we perform probabilistic calibration using fairness-aware loss functions. Experimental results demonstrate that our approach can (a) precisely locate subsets of the test data where the model is unbiased, and (b) significantly reduce bias on the remaining data. Overall, propensity score matching offers a principled way to improve both fairness evaluation and mitigation, without sacrificing predictive performance.
- Abstract(参考訳): 公正な学習は、特定の保護された社会グループ(例えば、性別、民族、年齢によって分類されたグループ)に対する差別を緩和し、予測的パフォーマンス損失を最小限にすることを目的としている。
機械学習における公平性を改善する努力にもかかわらず、先行研究では、様々な公正度指標に対して測定された場合、多くのモデルが不公平であることが示されている。
本稿では,サンプルデータのトレーニングやテストの方法が,報告された公正度指標の信頼性に影響を及ぼすかどうかを検討する。
トレーニングデータとテストセットは、しばしば同じ集団からランダムにサンプリングされるため、トレーニングデータに存在するバイアスがテストデータに残っており、フェアネスアセスメントを誘発する可能性がある。
この問題に対処するため,確率スコアマッチングを適用した後処理手法であるFairMatchを提案し,バイアスの評価と緩和を行う。
FairMatchは、テストセットで同様の確率スコアを持つ制御と処理のペアを特定し、それに応じて異なるサブグループの決定しきい値を調整する。
一致しないサンプルに対しては,フェアネスを考慮した損失関数を用いた確率的キャリブレーションを行う。
実験結果から,我々のアプローチが有効であることが示された。
a) モデルをバイアスのないテストデータのサブセットを正確に特定し、
(b)残りのデータのバイアスを著しく低減する。
全体として、妥当性スコアマッチングは、予測性能を犠牲にすることなく、公平性評価と緩和の両方を改善するための原則化された方法を提供する。
関連論文リスト
- Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
我々は、表現不足のバイアスによって破損したデータから学習する問題を考察する。
偏りのないデータの少ない場合、グループワイドのドロップアウト率を効率的に推定できることが示される。
本アルゴリズムは,有限VC次元のモデルクラスに対して,効率的な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-19T18:25:44Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
本研究では,データ偏差の変化が公正分類器の精度と公平性に及ぼす影響について検討する。
我々の実験は、既存のフェアネスダッシュボードにデータバイアスリスクの尺度を統合する方法を示している。
論文 参考訳(メタデータ) (2023-02-12T13:04:46Z) - Arbitrariness and Social Prediction: The Confounding Role of Variance in
Fair Classification [31.392067805022414]
異なる訓練されたモデル間での予測のばらつきは、公正なバイナリ分類における重要な、未探索のエラーの原因である。
実際には、いくつかのデータ例のばらつきは非常に大きいので、決定を効果的に任意にすることができる。
予測が任意である場合に分類を省略するアンサンブルアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-27T06:52:04Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Error Parity Fairness: Testing for Group Fairness in Regression Tasks [5.076419064097733]
この研究は、回帰フェアネスの概念としてエラーパリティを示し、グループフェアネスを評価するためのテスト手法を導入する。
続いて、いくつかの統計上のグループを比較し、格差を探索し、影響されたグループを特定するのに適した置換テストが実施される。
全体として、提案された回帰公正性テスト手法は、公正な機械学習文献のギャップを埋め、より大きなアカウンタビリティ評価とアルゴリズム監査の一部として機能する可能性がある。
論文 参考訳(メタデータ) (2022-08-16T17:47:20Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
回帰問題に対する正規化(FaiReg)に基づく単純かつ効果的な手法を提案する。
データバランシングと敵対的トレーニングという,公正性のための2つの標準的な手法と比較する。
その結果、データバランスよりも不公平さの影響を低減できる優れた性能を示した。
論文 参考訳(メタデータ) (2022-02-02T12:26:25Z) - Robust Fairness-aware Learning Under Sample Selection Bias [17.09665420515772]
サンプル選択バイアス下での頑健で公正な学習のための枠組みを提案する。
テストデータが利用可能で、利用できない場合に、サンプル選択バイアスを処理する2つのアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-05-24T23:23:36Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Robust Fairness under Covariate Shift [11.151913007808927]
保護グループメンバーシップに関して公正な予測を行うことは、分類アルゴリズムの重要な要件となっている。
本稿では,ターゲット性能の面で最悪のケースに対して頑健な予測値を求める手法を提案する。
論文 参考訳(メタデータ) (2020-10-11T04:42:01Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
異なるサイズと分布の群に同じ重要性を与えることで、トレーニングデータにおけるバイアスの影響を防止できることが、ロバストネスと矛盾する可能性があることを示す。
少数のトレーニングデータのサンプリングやラベル付けを制御できる敵は、制約のないモデルで達成できる以上のテスト精度を著しく削減することができる。
我々は、複数のアルゴリズムとベンチマークデータセットに対する攻撃の実証的な評価を通じて、公正な機械学習の堅牢性を分析する。
論文 参考訳(メタデータ) (2020-06-15T18:17:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、バイアスがあるだけでなく、真のデータ分布に最適な精度を持つ分類器を生成する。
公平性に制約されたERMによるこの問題の是正能力について検討する。
また、トレーニングデータの再重み付け、等化オッド、復号化パリティなど、他のリカバリ手法についても検討する。
論文 参考訳(メタデータ) (2019-12-02T22:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。