Physics-guided and fabrication-aware inverse design of photonic devices using diffusion models
- URL: http://arxiv.org/abs/2504.17077v1
- Date: Wed, 23 Apr 2025 19:54:33 GMT
- Title: Physics-guided and fabrication-aware inverse design of photonic devices using diffusion models
- Authors: Dongjin Seo, Soobin Um, Sangbin Lee, Jong Chul Ye, Haejun Chung,
- Abstract summary: We present AdjointDiffusion, a physics-guided framework that integrates adjoint gradient sensitivity into the sampling process of diffusion models.<n>Our method consistently outperforms state-of-the-art nonlinear gradient approaches in both efficiency and manufacturability.
- Score: 43.51581973358462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing free-form photonic devices is fundamentally challenging due to the vast number of possible geometries and the complex requirements of fabrication constraints. Traditional inverse-design approaches--whether driven by human intuition, global optimization, or adjoint-based gradient methods--often involve intricate binarization and filtering steps, while recent deep learning strategies demand prohibitively large numbers of simulations (10^5 to 10^6). To overcome these limitations, we present AdjointDiffusion, a physics-guided framework that integrates adjoint sensitivity gradients into the sampling process of diffusion models. AdjointDiffusion begins by training a diffusion network on a synthetic, fabrication-aware dataset of binary masks. During inference, we compute the adjoint gradient of a candidate structure and inject this physics-based guidance at each denoising step, steering the generative process toward high figure-of-merit (FoM) solutions without additional post-processing. We demonstrate our method on two canonical photonic design problems--a bent waveguide and a CMOS image sensor color router--and show that our method consistently outperforms state-of-the-art nonlinear optimizers (such as MMA and SLSQP) in both efficiency and manufacturability, while using orders of magnitude fewer simulations (approximately 2 x 10^2) than pure deep learning approaches (approximately 10^5 to 10^6). By eliminating complex binarization schedules and minimizing simulation overhead, AdjointDiffusion offers a streamlined, simulation-efficient, and fabrication-aware pipeline for next-generation photonic device design. Our open-source implementation is available at https://github.com/dongjin-seo2020/AdjointDiffusion.
Related papers
- Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.<n>It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)<n>The positions of PAs can be reconfigured to both spanning large-scale path and space.
arXiv Detail & Related papers (2025-02-12T18:54:10Z) - PACE: Pacing Operator Learning to Accurate Optical Field Simulation for Complicated Photonic Devices [14.671301859745453]
Existing SOTA approaches, NeurOLight, struggle with predicting high-fidelity fields for real-world complicated photonic devices.
We propose a novel cross-axis factorized PACE operator with a strong long-distance modeling capacity.
Inspired by human learning, we conquer the simulation task for extremely hard cases into two progressively easy tasks.
arXiv Detail & Related papers (2024-11-05T22:03:14Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Transfer learning-assisted inverse modeling in nanophotonics based on mixture density networks [0.840835093659811]
In this paper, we propose an inverse modeling method for nanophotonic structures based on a mixture density network model enhanced by transfer learning.
The proposed approach allows overcoming these limitations using transfer learning-based techniques, while preserving a high accuracy in the prediction capability of the design solutions given an optical response as an input.
arXiv Detail & Related papers (2024-01-21T09:03:30Z) - DualFluidNet: an Attention-based Dual-pipeline Network for FLuid Simulation [4.694954114339147]
We propose an innovative approach for 3D fluid simulations utilizing an Attention-based Dual-pipeline Network.
We find a way to achieve a better balance between global fluid control and physical law constraints.
We also propose a new dataset, Tank3D, to further explore the network's ability to handle more complicated scenes.
arXiv Detail & Related papers (2023-12-28T07:37:11Z) - Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation [2.5556910002263984]
Score-based diffusion models (SBDM) have emerged as state-of-the-art approaches for image generation.
This paper develops SBDMs in the infinite-dimensional setting, that is, we model the training data as functions supported on a rectangular domain.
We demonstrate how to overcome two shortcomings of current SBDM approaches in the infinite-dimensional setting.
arXiv Detail & Related papers (2023-03-08T18:10:10Z) - Dimensionality-Varying Diffusion Process [52.52681373641533]
Diffusion models learn to reverse a signal destruction process to generate new data.
We make a theoretical generalization of the forward diffusion process via signal decomposition.
We show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024times1024$ resolution from 52.40 to 10.46.
arXiv Detail & Related papers (2022-11-29T09:05:55Z) - A DeepParticle method for learning and generating aggregation patterns
in multi-dimensional Keller-Segel chemotaxis systems [3.6184545598911724]
We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three space dimensions.
We further develop DeepParticle (DP) method to learn and generate solutions under variations of physical parameters.
arXiv Detail & Related papers (2022-08-31T20:52:01Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.