Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation
- URL: http://arxiv.org/abs/2303.04772v4
- Date: Sat, 19 Oct 2024 03:10:43 GMT
- Title: Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation
- Authors: Paul Hagemann, Sophie Mildenberger, Lars Ruthotto, Gabriele Steidl, Nicole Tianjiao Yang,
- Abstract summary: Score-based diffusion models (SBDM) have emerged as state-of-the-art approaches for image generation.
This paper develops SBDMs in the infinite-dimensional setting, that is, we model the training data as functions supported on a rectangular domain.
We demonstrate how to overcome two shortcomings of current SBDM approaches in the infinite-dimensional setting.
- Score: 2.5556910002263984
- License:
- Abstract: Score-based diffusion models (SBDM) have recently emerged as state-of-the-art approaches for image generation. Existing SBDMs are typically formulated in a finite-dimensional setting, where images are considered as tensors of finite size. This paper develops SBDMs in the infinite-dimensional setting, that is, we model the training data as functions supported on a rectangular domain. In addition to the quest for generating images at ever-higher resolutions, our primary motivation is to create a well-posed infinite-dimensional learning problem that we can discretize consistently on multiple resolution levels. We thereby intend to obtain diffusion models that generalize across different resolution levels and improve the efficiency of the training process. We demonstrate how to overcome two shortcomings of current SBDM approaches in the infinite-dimensional setting. First, we modify the forward process using trace class operators to ensure that the latent distribution is well-defined in the infinite-dimensional setting and derive the reverse processes for finite-dimensional approximations. Second, we illustrate that approximating the score function with an operator network is beneficial for multilevel training. After deriving the convergence of the discretization and the approximation of multilevel training, we demonstrate some practical benefits of our infinite-dimensional SBDM approach on a synthetic Gaussian mixture example, the MNIST dataset, and a dataset generated from a nonlinear 2D reaction-diffusion equation.
Related papers
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Neural Diffusion Models [2.1779479916071067]
We present a generalization of conventional diffusion models that enables defining and learning time-dependent non-linear transformations of data.
NDMs outperform conventional diffusion models in terms of likelihood and produce high-quality samples.
arXiv Detail & Related papers (2023-10-12T13:54:55Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
This work presents a new score-decomposed diffusion model to explicitly optimize the tangled distributions during image generation.
We equalize the refinement parts of the score function and energy guidance, which permits multi-objective optimization on the manifold.
SDDM outperforms existing SBDM-based methods with much fewer diffusion steps on several I2I benchmarks.
arXiv Detail & Related papers (2023-08-04T06:21:57Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
We formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions.
We show that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure.
We also develop guidelines for the design of infinite-dimensional diffusion models.
arXiv Detail & Related papers (2023-02-20T18:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.