論文の概要: How Individual Traits and Language Styles Shape Preferences In Open-ended User-LLM Interaction: A Preliminary Study
- arxiv url: http://arxiv.org/abs/2504.17083v1
- Date: Wed, 23 Apr 2025 20:14:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.17157
- Title: How Individual Traits and Language Styles Shape Preferences In Open-ended User-LLM Interaction: A Preliminary Study
- Title(参考訳): オープンエンドユーザ-LLMインタラクションにおける個人特性と言語スタイルの形状選好 : 予備的検討
- Authors: Rendi Chevi, Kentaro Inui, Thamar Solorio, Alham Fikri Aji,
- Abstract要約: LLMの言語スタイルは確かにユーザの好みに影響を与えているが、どの言語スタイルがユーザーの好みにどのように影響するかは異なる。
我々の今後の方向性は、まずこれらの制限に対処することであり、言語スタイル、個々の特徴、嗜好の間のより包括的な共同効果分析を可能にし、さらにこれらの変数とそれ以上の因果関係について検討する。
- 参考スコア(独自算出の注目度): 32.53638485900923
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: What makes an interaction with the LLM more preferable for the user? While it is intuitive to assume that information accuracy in the LLM's responses would be one of the influential variables, recent studies have found that inaccurate LLM's responses could still be preferable when they are perceived to be more authoritative, certain, well-articulated, or simply verbose. These variables interestingly fall under the broader category of language style, implying that the style in the LLM's responses might meaningfully influence users' preferences. This hypothesized dynamic could have double-edged consequences: enhancing the overall user experience while simultaneously increasing their susceptibility to risks such as LLM's misinformation or hallucinations. In this short paper, we present our preliminary studies in exploring this subject. Through a series of exploratory and experimental user studies, we found that LLM's language style does indeed influence user's preferences, but how and which language styles influence the preference varied across different user populations, and more interestingly, moderated by the user's very own individual traits. As a preliminary work, the findings in our studies should be interpreted with caution, particularly given the limitations in our samples, which still need wider demographic diversity and larger sample sizes. Our future directions will first aim to address these limitations, which would enable a more comprehensive joint effect analysis between the language style, individual traits, and preferences, and further investigate the potential causal relationship between and beyond these variables.
- Abstract(参考訳): LLMとのインタラクションがユーザにとってより望ましい理由は何ですか?
LLMの応答の情報精度が影響のある変数の1つであると仮定するのは直感的であるが、最近の研究では、LLMの応答がより権威的、確実で、順応的、あるいは単に冗長であると認識された場合にも、不正確なLLMの応答が好ましいことが判明している。
興味深いことに、これらの変数は言語スタイルのより広いカテゴリに該当し、LLMの応答のスタイルがユーザの好みに有意義に影響を及ぼす可能性があることを示唆している。
この仮説化されたダイナミクスは、LLMの誤報や幻覚といったリスクへの感受性を同時に高めながら、全体的なユーザエクスペリエンスを向上させるという、二重エッジの結果をもたらす可能性がある。
本稿では,本課題を探求するための予備研究について述べる。
探索的および実験的なユーザスタディを通じて,LLMの言語スタイルがユーザの嗜好に実際に影響を与えていることが判明した。
予備的な研究として,本研究の知見は特に,より広範な人口多様性とより大きなサンプルサイズを必要とするサンプルの限界を考えると,慎重に解釈されるべきである。
我々の今後の方向性は、まずこれらの制限に対処することであり、言語スタイル、個々の特徴、嗜好の間のより包括的な共同効果分析を可能にし、さらにこれらの変数とそれ以上の因果関係について検討する。
関連論文リスト
- Higher-Order Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions [4.234771450043289]
大規模言語モデル(LLM)は、人間の振る舞いをシミュレートする能力が高まっている。
本稿では, マルチターンインタビュー文として, 合成ユーザバックストリーを用いた仮想ペルソナ構築手法を提案する。
我々の生成したバックストリーは、より長く、細部が豊富であり、従来の方法と比較して、特定の個人を記述するのに一貫性がある。
論文 参考訳(メタデータ) (2025-04-16T00:10:34Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
調整可能な大きな言語モデル(LLM)をトレーニングします。
木構造における3K以上の多ターン会話を含む多ターン嗜好データセットを開発した。
評価のために、慎重に選択された100のサンプルと、会話中にカスタマイズされたアライメント性能を測定するために適切に設計されたメトリクスからなるALOEベンチマークを確立する。
論文 参考訳(メタデータ) (2024-10-04T17:48:29Z) - Modulating Language Model Experiences through Frictions [56.17593192325438]
言語モデルの過度な消費は、短期において未確認エラーを伝播し、長期的な批判的思考のために人間の能力を損なうリスクを出力する。
行動科学の介入にインスパイアされた言語モデル体験のための選択的摩擦を提案し,誤用を抑える。
論文 参考訳(メタデータ) (2024-06-24T16:31:11Z) - "I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust [51.542856739181474]
不確実性の自然言語表現の違いが、参加者の信頼、信頼、全体的なタスクパフォーマンスにどのように影響するかを示す。
その結果, 一人称表情は, 参加者のシステムに対する信頼度を低下させ, 参加者の正確性を高めつつ, システムの回答に同調する傾向にあることがわかった。
以上の結果から,不確実性の自然言語表現の使用は,LLMの過度な依存を軽減するための効果的なアプローチである可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-01T16:43:55Z) - Scaling Data Diversity for Fine-Tuning Language Models in Human Alignment [84.32768080422349]
人間の好みの調整は、大きな言語モデルが誤解を招くか有害なコンテンツを生成するのを防ぐ。
本研究では, 微調整後のLLMの最終性能と線形相関を示唆し, 即時多様性の新たな定式化を提案する。
論文 参考訳(メタデータ) (2024-03-17T07:08:55Z) - Dissecting Human and LLM Preferences [80.55271307662365]
人間は誤りに敏感ではなく、自分の姿勢を支持する反応を好んでおり、モデルが限界を認めている場合、明確な嫌悪を示します。
GPT-4-Turboのような先進的なLCMは、より正確さ、明快さ、無害さを強調している。
嗜好に基づく評価は意図的に操作可能であることを示す。
論文 参考訳(メタデータ) (2024-02-17T14:34:31Z) - Quantifying the Persona Effect in LLM Simulations [25.367927300697424]
大規模言語モデル(LLM)は、人間の言語と振る舞いをシミュレートする際、顕著な可能性を示してきた。
本研究では,パーソナ変数のデコグラフィ,社会的,行動的要因の統合がLLMの多様な視点をシミュレートする能力にどのように影響するかを検討する。
既存の主観的NLPデータセットにおけるアノテーションの10%のばらつきをペルソナ変数が説明できることがわかった。
論文 参考訳(メタデータ) (2024-02-16T16:35:35Z) - Eliciting Personality Traits in Large Language Models [0.0]
大規模言語モデル(LLM)は採用の文脈において、候補者と雇用主の両方が利用している。
本研究は,異なる入力プロンプトに基づいて,それらの出力変動を調べることによって,そのようなモデルをよりよく理解することを目的とする。
論文 参考訳(メタデータ) (2024-02-13T10:09:00Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
大規模言語モデル(LLM)が人間の反応バイアスをどの程度反映しているかについて検討する。
アンケート調査では, LLMが人間のような応答バイアスを示すかどうかを評価するためのデータセットとフレームワークを設計した。
9つのモデルに対する総合的な評価は、一般のオープンかつ商用のLCMは、一般的に人間のような振る舞いを反映しないことを示している。
論文 参考訳(メタデータ) (2023-11-07T15:40:43Z) - Can LLMs Capture Human Preferences? [5.683832910692926]
本研究では,人間の調査回答をエミュレートし,好みを提示する上で,Large Language Models (LLMs) の生存可能性について検討する。
我々はLLMからの反応を様々な言語で比較し、それらを人間の反応と比較し、より小さく、より早く、より大きい、後の報酬の間の好みを探求する。
以上の結果より, GPT-3.5はヒトの意思決定者とは異なり, 早期の報酬に対するレキソグラフィな嗜好を示し, GPT-3.5はヒトよりも忍耐力が低いことが示唆された。
論文 参考訳(メタデータ) (2023-05-04T03:51:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。