Improving Human-Autonomous Vehicle Interaction in Complex Systems
- URL: http://arxiv.org/abs/2504.17170v1
- Date: Thu, 24 Apr 2025 01:09:51 GMT
- Title: Improving Human-Autonomous Vehicle Interaction in Complex Systems
- Authors: Robert Kaufman,
- Abstract summary: I argue that understanding the relationships between different aspects of the human-AV system can help us build improved and adaptable AV communications.<n>Findings highlight the need for task-sensitive, modality-appropriate communications tuned to learner cognitive limits and goals.<n>Third, I use machine learning (ML) to illuminate personal factors predicting trust in AVs.
- Score: 0.9790236766474201
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Unresolved questions about how autonomous vehicles (AVs) should meet the informational needs of riders hinder real-world adoption. Complicating our ability to satisfy rider needs is that different people, goals, and driving contexts have different criteria for what constitutes interaction success. Unfortunately, most human-AV research and design today treats all people and situations uniformly. It is crucial to understand how an AV should communicate to meet rider needs, and how communications should change when the human-AV complex system changes. I argue that understanding the relationships between different aspects of the human-AV system can help us build improved and adaptable AV communications. I support this argument using three empirical studies. First, I identify optimal communication strategies that enhance driving performance, confidence, and trust for learning in extreme driving environments. Findings highlight the need for task-sensitive, modality-appropriate communications tuned to learner cognitive limits and goals. Next, I highlight the consequences of deploying faulty communication systems and demonstrate the need for context-sensitive communications. Third, I use machine learning (ML) to illuminate personal factors predicting trust in AVs, emphasizing the importance of tailoring designs to individual traits and concerns. Together, this dissertation supports the necessity of transparent, adaptable, and personalized AV systems that cater to individual needs, goals, and contextual demands. By considering the complex system within which human-AV interactions occur, we can deliver valuable insights for designers, researchers, and policymakers. This dissertation also provides a concrete domain to study theories of human-machine joint action and situational awareness, and can be used to guide future human-AI interaction research. [shortened for arxiv]
Related papers
- A Human Digital Twin Architecture for Knowledge-based Interactions and Context-Aware Conversations [0.9580312063277943]
Recent developments in Artificial Intelligence (AI) and Machine Learning (ML) are creating new opportunities for Human-Autonomy Teaming (HAT)<n>We present a real-time Human Digital Twin (HDT) architecture that integrates Large Language Models (LLMs) for knowledge reporting, answering, and recommendation, embodied in a visual interface.<n>The HDT acts as a visually and behaviorally realistic team member, integrated throughout the mission lifecycle, from training to deployment to after-action review.
arXiv Detail & Related papers (2025-04-04T03:56:26Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Developing Situational Awareness for Joint Action with Autonomous Vehicles [8.328428631388556]
To achieve joint human-AV action goals, sufficient situational awareness must be held by the human, AV, and human-AV system collectively.
We present a systems-level framework that integrates cognitive theories of joint action and situational awareness as a means to tailor communications.
arXiv Detail & Related papers (2024-04-17T23:41:48Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCue is a novel approach for improving visual feature extraction in HOI detection.
We develop a transformer-based feature extraction module with a multi-tower architecture that integrates contextual cues into both instance and interaction detectors.
arXiv Detail & Related papers (2023-11-26T09:11:32Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
Leveraging Artificial Intelligence in decision support systems has disproportionately focused on technological advancements.
A human-centered perspective attempts to alleviate this concern by designing AI solutions for seamless integration with existing processes.
arXiv Detail & Related papers (2023-10-30T17:46:38Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
Emergent communication (Emecom) is a field of research aiming to develop artificial agents capable of using natural language.
In this review, we delineate all the common proprieties we find across the literature and how they relate to human interactions.
We identify two subcategories and highlight their characteristics and open challenges.
arXiv Detail & Related papers (2023-08-01T14:43:10Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
We introduce the collaborative multi-object navigation task CoMON.
In this task, an oracle agent has detailed environment information in the form of a map.
It communicates with a navigator agent that perceives the environment visually and is tasked to find a sequence of goals.
We show that the emergent communication can be grounded to the agent observations and the spatial structure of the 3D environment.
arXiv Detail & Related papers (2021-10-12T06:56:11Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.